Here, we address the hemispheric interdependency of subcortical structures in the aging human brain. In particular, we investigated whether subcortical volume variations can be explained by the adjacency of structures in the same hemisphere or are due to the interhemispheric development of mirror subcortical structures in the brain. Seven subcortical structures in each hemisphere were automatically segmented in a large sample of 3312 magnetic resonance imaging (MRI) studies of elderly individuals in their 70s and 80s. We performed Eigenvalue analysis, and found that anatomic volumes in the limbic system and basal ganglia show similar statistical dependency whether considered in the same hemisphere (intrahemispherically) or different hemispheres (interhemispherically). Our results indicate that anatomic bilaterality of subcortical volumes is preserved in the aging human brain, supporting the hypothesis that coupling between non-adjacent subcortical structures might act as a mechanism to compensate for the deleterious effects of aging.