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a b s t r a c t 

Sleep plays a substantial role in daily cognitive performance, mood, and memory. The study of sleep 

has attracted the interest of neuroscientists, clinicians and the overall population, with an increasing 

number of adults suffering from insufficient amounts of sleep. Sleep is an activity composed of different 

stages whose temporal dynamics, cycles and interdependencies are not fully understood. Healthy body 

function and personal well being, however, depends on the proper unfolding and continuance of the 

sleep cycles. The characterization of the different sleep stages can be undertaken with the development 

of biomarkers derived from sleep recording. For this purpose, in this work we analyzed single-channel 

EEG signals from 106 healthy subjects. The signals were quantified using the permutation vector approach 

using five different-information theoretic measures: i) Shannon’s entropy, ii) MPR statistical complexity, 

iii) Fisher information, iv) Renyí Min-entropy and v) Lempel-Ziv complexity. The results show that all five 

information theory-based measures make it possible to quantify and classify the underlying dynamics of 

the different sleep stages. In addition to this, we combine these measures to show that planes containing 

pairs of measures, such as the plane composed of Lempel-Ziv and Shannon, have a better performance 

for differentiating sleep states than measures used individually for the same purpose. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

We think of sleep as our daily period of rest and recovery from 

he stresses of everyday life; however, research is revealing that 

leep is a dynamic activity during which many processes vital to 

ealth and well-being take place. Sleep is an active physiologi- 

al process, while metabolism generally slows down during sleep, 

ll major organs and regulatory systems continue to function nor- 

ally. New evidence shows that sleep is essential to help main- 

ain mood, memory and cognitive performance [1–3] . Sleep plays 

lso a pivotal role in the normal function of the endocrine and im- 

une systems [4] . Furthermore, the incidence of sleep problems 

n different pathologies is uncontroversial and studies show a con- 

ection between sleep duration and health conditions such as obe- 

ity, diabetes, hypertension, and depression among others [5–9] . A 

ommon taxonomy of sleep differentiates between two different 

unctioning modes: rapid eye movement (REM) sleep and non-REM 
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leep (NREM). REM is defined as an active sleeping period marked 

y intense brain activity. Brain waves are fast and desynchronized 

imilar to those in the waking state, this is also the sleep stage 

n which most dreams occur. NREM sleep is characterized by a re- 

uction in physiological activity, the brain waves get slower and 

ave greater amplitude, breathing, and heart rate slows down and 

lood pressure drops. The NREM phase comprises three stages: N1, 

2, and N3. The N1 stage is characterized by perceived drowsiness 

r transition from being awake to falling asleep observed by slow- 

ng down the brain waves and muscle activity. Stage N2 is a pe- 

iod of light sleep during which eye movement stops. Brain waves 

ecome slower (Theta waves (4–7 Hz)) with occasional bursts of 

apid waves (12–14 Hz) called sleep spindles , coupled with sponta- 

eous periods of muscle tone mixed. Lastly, stage N3 is character- 

zed by the presence of Delta (0.5–4 Hz) slow waves, interspersed 

ith smaller, faster waves [10] . In the N3 stage, sleep is deeper, 

ith no eye movement, decreased muscle activity though mus- 

les keep their ability to operate, resembling a coma state. Usu- 

lly, sleepers pass through these four stages (REM, N1, N2, and N3) 

yclically. A complete sleep cycle takes an average of 90 to 110 min, 

ith each one lasting between 5 to 15 min. These cycles must be 

aintained for healthy body function in awake state [11] . 

https://doi.org/10.1016/j.chaos.2021.110798
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.110798&domain=pdf
mailto:dmateos@santafe-conicet.gov.ar
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Polysomnography studies are performed to investigate prob- 

ems in sleep cycles. They consist of 12 h of multi-physiological 

egisters such as electroencephalography (EEG), electrocardiogram 

ECG), or electrooculography (EOG) among others. Polysomnogra- 

hy studies are usually performed in medical institutions requir- 

ng the patient to stay overnight, becoming an issue for the pa- 

ient, especially when they are children. The detection of the dif- 

erent sleep cycles is done visually (over the electrophysiological 

ignals tracing) requiring specialized clinicians. Automatic classi- 

cation of sleep stages is an alternative to manual identification 

hich is time-consuming and potentially biased since it depends 

n personal expertise. The classification of sleep stages by algorith- 

ic means can reduce costs and provide quantitative and therefore 

omparable assessments. 

The existing algorithms for sleep classification can be broadly 

ivided into two groups: multi-parameter (multi-channel EEG, 

CG, etc) and single-channel EEG based analysis. The former tend 

o have better performance [12] , but are costly from the patient’s 

erspective, for example, in terms of lack of comfort [13] or the 

leep disturbances induced by an excessive number of wire con- 

ections during the recording process [14] . The latter is more suit- 

ble when having in mind the patient’s comfort, especially given 

he large amount of time that sleep studies require. According to 

he evidence [15] , single-channel EEG signal can deliver reliable 

coring. However, a proper characterization of sleep stages will re- 

uire more than a reliable signal. 

The quantitative identification of sleep features is a promis- 

ng avenue to help us understand sleep dynamics. A number of 

ethods have been already put to use, among them, time-domain 

nalysis [16,17] , frequency domain [18,19] , time-frequency domain 

nalysis [20,21] and non-linear feature extraction [19,22,23] . How- 

ver, the candidate features that can be extracted by mathemati- 

al and computational means often lack a clear physiological in- 

erpretation. In this embarrassment of the riches, the model pa- 

ameter identification is more often than not through trial and 

rror. 

In this work, we propose to use theoretically sounded mea- 

ures equipped also with straightforward and meaningful physio- 

ogical interpretation. Specifically, we borrow information-theoretic 

easures and we use them as functional quantifiers of the prob- 

bility distribution defined by the EEG signal. Information theory 

easures can capture the degree to which the neural system in- 

egrates information. Particularly, Bandt and Pompe proposed the 

se of Shannon entropy over a quantification analysis based on or- 

inal patterns, called Permutation Entropy (PE) [24] . This measure 

as been applied for investigating EEG signals in different con- 

exts as such as epilepsy [25] , coma [26] , anesthetics [27] , and

rofusely in sleep [28–30] , showing better results than traditional 

nalyses. Recent work has used Permutation Entropy to study the 

ransition between Open Eyes and Closed Eyes, showing that the 

pen Eyes state is characterized by higher entropy values with re- 

pect to the Close Eyes state [31] . More recently, additional per- 

utation based quantifiers have been used in sleep studies, in- 

luding Permutation Min-entropy (PEmin) [32] , MPR statistical com- 

lexity (Martín-Plastino-Rosso (MPR) complexity) [33] , Fisher in- 

ormation (FI) [34] and Permutation Lempel-Ziv complexity (PLZC) 

35] . 

The paper is organized as follows: In Section 2 we explain the 

haracteristics of the dataset including a brief but self-contained 

ntroduction to the information quantifiers used. In Section 3 we 

tudy the distribution of signal patterns in the different sleep 

tages. Then, we analyze the signals using five different informa- 

ion measures and compare the results. Finally, we analyze the EEG 

ignal through three different complexity/ information vs entropy 

lanes. The discussion of the results, possible applications, and fu- 

ure research are discussed in Section 4 . 
2 
. Methods 

.1. Electrophysiological recordings 

For this study we used a single-channel EEG signal from a 

olysomnography recording belonging to 106 subjects taken from 

he Physionet databank, The Sleep-EDF Database [Expanded] [36,37] . 

he dataset is freely available at [38] . The study group was made 

p of 54 men and 52 women, 25–85 years of age at the time of

he recordings. This polysomnogram (PSGs) collection with accom- 

anying hypnograms (expert annotations of sleep stages) comes 

rom two studies (detail in [37,39] ). The recordings are whole-night 

olysomnographic sleep recordings containing EEG (from Fpz–Cz 

lectrode locations). The EEG signals were each sampled at 100 

z. The sleep stages were classified in the five stages above- 

entioned: Awake closed eyes, REM, N1, N2 , and N3 . Each patient 

resented a different number of epochs Ne per sleep state, being 

he average number of epochs for each stage: < N Awake > = 1972 , <

 REM 

> = 169 , < N N1 > = 93 , < N N2 > = 483 , < N N3 > = 159 . All seg-

ents have the same length, L = 30 0 0 data points ( t = 30 s of

ecording), and all the recordings were pre-processed with a band- 

ass filter Fir1 between 0.5 to 40 Hz. 

.2. Brief introduction to the information measures 

For the study of dynamical phenomena, it is necessary to have 

 sequence of measurements related to them. These sequences are 

sually given in the form of time series which allow extracting in- 

ormation on the underlying physical system under study. A time 

eries (i.e. an EEG recording) can be associated with a probability 

istribution function (PDF), and use information theory quantifiers 

o characterize its properties. Next, we will introduce the basic no- 

ions of the information measures used in this work. 

hannon entropy 

Given a time series X (t) ≡ { x t ; t = 1 , . . . , N } , with N the num-

er of observations, the Shannon’s logarithmic information mea- 

ure ( Shannon entropy ) [40] of the associated PDF, P ≡ { p i ; i = 

 , . . . , M} with 

∑ M 

i =1 p i = 1 , and M the number of possible states 

s defined by: 

[ P ] = −
M ∑ 

i =1 

p i log (p i ) . (1) 

hen we have total certainty that our system is in the state i the 

robability p i = 1 and this functional is equal to zero. In contrast, 

hen the probability distribution is uniform, P u ≡ { p i = 1 /M; ∀ i =
 , . . . , M} , our knowledge about the system is minimum (all the 

tates have the same probability) and the entropy reach its maxi- 

um. 

ènyi Min-entropy 

In 1961, A. Rènyi [41] was looking for the most general defini- 

ion of information measures, that would preserve the additivity 

or independent events, and was compatible with the axioms of 

robability. He defined his generalize entropy as: 

 q [ P ] = 

1 

1 − q 
log 

( 

M ∑ 

i =1 

(p i ) 
q 

) 

(2) 

here the order q (q ≥ 0 and q � = 1) is a bias parameter: q < 1

rivileges rare events, while q > 1 privileges salient events. The 

hannon entropy S[ P ] is recovered in the limit as q → 1 . When

 → ∞ the Rènyi entropy R q converges to the Min-entropy R ∞ 

 ∞ 

[ P ] = min 

i 
(− log p i ) = − log max 

i 
p i . (3) 
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The Min-entropy is the smallest entropy measure in the family 

f Rènyi entropies. In this sense, it is the strongest way to measure 

he information content of a discrete random variable. It can be 

hown that R ∞ 

[ P ] is a function of the highest probability [42] . In

articular, Min-entropy is never larger than the Shannon entropy. 

isher Information 

The Shannon entropy S is a measure of ”global character”, and 

n small local regions it lacks sensitivity to strong changes in the 

DF. In such a situation, the Fisher information F is a more effective 

uantifier [34,43] : 

[ f ] = 

∫ | −→ ∇ f (x ) | 2 
f (x ) 

dx (4) 

n Eq. (4) , the gradient operator, 
−→ ∇ , significantly influences the 

ontribution of minute local f -variations to the Fisher information 

alue, so that the quantifier is said to be local. Local sensitivity is 

seful in scenarios whose description necessitates an appeal to a 

otion of “order” [44–46] . Fisher information constitutes a measure 

f the gradient content of the distribution f (continuous PDF), thus 

eing quite sensitive even to tiny localized perturbations. The in- 

uitive interpretation of the Fisher information is that it measures 

he ability to estimate a particular parameter and it is also a mea- 

ure of the state of disorder of a system [43,47] . Its most important

roperty being the so-called Cramer–Rao bound [48] . 

For Fisher information measure computation (discrete PDF), we 

ollow the proposal for Dehesa and coworkers in [49] which define 

for a discrete distribution as: 

[ P ] = 4 

N−1 ∑ 

i =1 

( 
√ 

p i +1 −
√ 

p i ) 
2 . (5) 

A system in a very ordered state will have a very narrow PDF, 

he Shannon entropy is S → 0 and the Fisher information measure 

 → F max . On the other hand, when the system lies in a very dis-

rder distribution (flat PDF) S → S max , F → 0 . From this simple

xample we can extrapolate that the Fisher information measure 

nd the Shannon entropy behavior behave reciprocally [50] . 

.2.1. MPR statistical complexity 

If we take the two extremes -perfect order (i.e., a periodic se- 

uence) and a maximal randomness (i.e white noise)- both are 

ery easily to describe (i.e. number of bits [51] ) and with com- 

lexity closed to zero in both cases. At a given distance from these 

wo extremes, it lies a wide range of possible ordinal structures. 

tatistical complexity measures [52] allow to quantify this array of 

ehavior [53] . In our work we consider the Martín-Plastino-Rosso 

MPR) statistical complexity introduced in [33] , because is able to 

uantify critical details of dynamical processes underlying our data 

et. 

Based in the Lopez-Ruiz et al. work [54] , the statistical com- 

lexity measure of interest is defined through the functional prod- 

ct form 

[ P ] = Q J [ P, P e ] · H[ P ] (6) 

f the normalized Shannon entropy: 

[ P ] = S[ P ] / S max (7) 

ith S max = S[ P e ] = log N, ( 0 ≤ H ≤ 1 ) and the disequilibrium Q J 

efined in term of the Jensen–Shannon divergence . That is, 

 J [ P, P u ] = Q 0 J [ P, P u ] (8) 

ith: 

 [ P, P u ] = S[(P + P u ) / 2] − S[ P ] / 2 − S[ P u ] / 2 (9)

he above-mentioned Jensen–Shannon divergence and Q 0 , a nor- 

alization constant ( 0 ≤ Q J ≤ 1 ), are equal to the inverse of the
3 
aximum possible value of J [ P, P e ] . This value is obtained when

ne of the components of the PDF, P, say p n , is equal to one and

he remaining p j are equal to zero. 

The statistical complexity depends on two different probability 

istributions, the one associated with the system under analysis, 

, and the uniform distribution, P u . The distance between this two 

robability distributions are measured using the Jensen–Shannon 

ivergence [55] . Furthermore, it has been shown that for a given 

alue of H, the range of possible C values varies between a min- 

mum C min and a maximum C max , restricting the possible values 

f the statistical complexity in a given complexity-entropy plane 

56] . Because of this, statistical complexity measures can provide 

mportant additional information related to the correlational struc- 

ure between the components of the physical system. 

empel–Ziv complexity 

Lempel–Ziv complexity (LZC) is a different way to analyze a 

equence; in this case, it is not based on the time series X (t) ≡
 x t ; t = 1 , . . . , N} PDF, but in the way that x t behaves along the se-

uence. LZC is based on Kolmogorov complexity –the minimal “in- 

ormation” contained in the sequence [48] . To estimate the com- 

lexity of X (t) we will use the Lempel and Ziv scheme proposed 

n 1976 [57] . In this approach, a sequence X (t) is parsed into a

umber W of words by considering any subsequence that has not 

et been encountered as a new word. The Lempel–Ziv complexity 

 LZ is the minimum number of words W required to reconstruct 

he information contained in the original time series. For example, 

he sequence 100110111001010 0 01011 can be parsed in 7 words: 

 · 0 · 01 · 101 · 1100 · 1010 · 001011 , giving a complexity c LZ = 7 . An

asy way to apply the Lempel-Ziv algorithm can be found in [58] . 

he LZC can be normalized based in the length N of the discrete 

equence and the alphabet length ( α) as: 

 LZ = 

c LZ [ log αN] 

N 

. 

.3. Time series discretization using Bandt–Pompe approach 

The study and characterization of time series X (t) by recourse 

o information theory tools assume that the underlying PDF is 

iven a priori. A similar problem arises in the Lempel-Ziv complex- 

ty context, where it is necessary to have a discrete time series. In 

he literature there are many methods to quantify continuous time 

eries such as binarization, histograms or wavelet, among others. 

owever, an effective method that emerges naturally is the one in- 

roduced by Bandt and Pompe in 2002 called permutation vectors 

24] . 

The permutation vectors method is based on the relative values 

f the neighbors belonging to the series, and in consequence takes 

nto account the time structure or causality of the process that 

enerated the sequence. To understand this idea, let us consider a 

eal-valued discrete-time series X (t) = { x t ∈ R } , and let D ≥ 2 and

≥ 1 be two integers. They will be called the embedding dimen- 

ion and the time delay, respectively. From the original time series, 

e introduce a D -dimensional vector Y 

(D,τ ) 
t : 

 

(D,τ ) 
t → (x t−(D −1) τ , . . . , x t−τ , x t ) with t ≥ (D − 1) τ. (10)

The vector Y 

(D,τ ) 
t preserves the dynamical properties of the full 

ynamical system depending on the order conditions specified by 

 and τ . The components of the phase space trajectory Y 

(D,τ ) 
t are 

orted in ascending order. Then, we can define a permutation vec- 

or , �(D,τ ) 
t , with components given by the original position of the 

orted values in ascending order. Each one of these vectors rep- 

esents a pattern (or motif) with D ! possible patterns. To clar- 

fy, let us show how all this works with an example. Suppose we 

ave a continuous series such as X (t) = { 0 . 32 , 1 . 8 , 5 . 4 , 0 . 25 , 1 . 7 }
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Fig. 1. Example of the EEG signals and their respective power spectrum for each sleep stage: Awake, REM, N1, N2, N3. 
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nd take the parameters D = 3 and τ = 1 . The embedding vectors 

 

(D,τ ) 
t are in this case defined as Y 

(3 , 1) 
1 

= (0 . 32 , 1 . 8 , 5 . 4) ; Y 

(3 , 1) 
2 

=
1 . 8 , 5 . 4 , 0 . 25) ; Y 

(3 , 1) 
3 

= (5 . 4 , 0 . 35 , 1 . 7) , and the respective per-

utation vectors are �(3 , 1) 
1 

= (0 , 1 , 2) , �(3 , 1) 
2 

= (1 , 2 , 0) and
(3 , 1) 
3 

= (2 , 0 , 1) . 

Regarding the selection of the parameters, Bandt and Pompe 

24] suggested working with 3 ≤ D ≤ 6 and specifically consider an 

mbedding delay τ = 1 . Nevertheless, other values of τ could pro- 

ide additional information. It has been recently shown that this 

arameter is strongly related, if it is relevant, to the intrinsic time 

cales of the system under analysis [59–61] . In this work we use 

 = 4 and τ = 1 for all the analysis, however similar results were

btained for D = 5 and τ = 1 . 

The Bandt and Pompe approach applied to information quan- 

ifier where used in many works in the past. For each informa- 

ion measures described above, we have their counterpart based 

n permutation vectors quantification, obtaining: i) Permutation 

ntropy [24] , ii) Permutation Min-entropy [59] , iii) MPR statisti- 

al complexity [62] , iv) Permutation Fisher information [46] and 

) Permutation Lempel-Ziv complexity [35] . 

To understand how information quantifiers are applied to per- 

utation vectors it is necessary to generate the rank vectors 

DF and then apply each of the different measurements. How- 

ver, with Lempel-Ziv due to it is an algorithmic measure, it may 

e a little more difficult to understand. We present an example 

o clarify this point. Suppose we have a continuous series X = 

 2 . 5 , 0 . 7 , 1 . 1 , 3 . 1 , 2 . 7 , 1 . 4 , 2 . 3 , 1 . 5 , 1 . 1 , 0 . 7 , 0 . 8 } and we

se the BP parameter D = 2 and τ = 1 , the embedding vectors are
4 
 

(2 , 1) 
1 

= (2 . 5 , 0 . 7) , Y 

(2 , 1) 
2 

= (0 . 7 , 1 . 1) , Y 

(2 , 1) 
3 

= (1 . 1 , 3 . 1) , Y 

(2 , 1) 
4 

=
3 . 1 , 2 . 7) , Y 

(2 , 1) 
5 

= (2 . 7 , 1 . 4) , Y 

(2 , 1) 
6 

= (1 . 4 , 2 . 3) , Y 

(2 , 1) 
7 

= (2 . 3 , 1 . 5) ,

 

(2 , 1) 
8 

= (1 . 5 , 1 . 1) , Y 

(2 , 1) 
9 

= (1 . 1 , 0 . 7) , Y 

(2 , 1) 
10 

= (0 . 7 , 0 . 8) . Since D =
 , the alphabet has a length equal to D ! = 2 , if the permutation 

ectors �0 = (0 , 1) is represented by 0 and �1 = (1 , 0) by 1 our

ontinuous sequence is quantified as 1001101110, applying the al- 

orithm explain in 2.2.1 and parsing it we get 1 · 0 · 01 · 101 · 101 ,

btaining C LZ = 5 . For simplicity, we used D = 2 in the example,

hen D > 2 the length of the sequence must be much greater than 

 ! . However, as shown in [35] this method can be extended to 

ny D . 

. Results 

.1. Rank vector analysis 

We analyzed 106 EEG signals from 12-hour polysomnography 

aken from the Physionet databank. The signals were cut in sub–

ignals correspond to the different periods of sleep stages ( Awake, 

EM, N1, N2 and N3 ). Fig. 1 shows an example of an EEG raw signal

above) and the power spectrum (below) for one typical subject 

subject 1) in different sleep stages. All the signals were quantified 

sing the Bandt and Pomp approach with the parameters D = 4 , 5 

nd τ = 1 . These embedding dimension is enough to the capture 

ausality information of the ordinal structure of the time series 

24] . 

First, we studied the permutation vectors ( �(D,τ ) ) distribu- 

ion in each sleep stage. Fig. 2 shows the permutation patterns 
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Fig. 2. Average Bandt-Pompe PDF for the different sleep states, D = 4 (pattern length) and τ = 1 (time lag). The BP pattern histogram represents the mean value and standard 

deviation calculated over all subject and all segments. Similar results were found for D = 5 and τ = 1 . 
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Table 1 

Mean values for all the information quantifiers applied to each sleep state. The 

quantifiers were calculated over all the segments and all the patients,the param- 

eters were set to D = 4 and τ = 1 . 

Measure Awake REM N1 N2 N3 

< H > 0.9155 0.8453 0.8659 0.77l52 0.6395 

< C MPR > 0.1231 0.2070 0.1908 0.2594 0.2959 

< F > 0.1209 0.1868 0.1910 0.2286 0.2661 

< C LZ > 0.4613 0.4173 0.4312 0.3728 0.2893 

< R ∞ > 0.5931 0.4973 0.5515 0.4260 0.3077 

#

t

t

c

3

m

F

p

L

I

t

t

istribution corresponding to the average of the total of 106 sub- 

ects, the bars represent the motif average overall epoch in the 

ame stage. The results shows for subjects in an awake state, the 

attern distribution tends to be uniform, the occurrence frequency 

or the different motifs is comparable for all the cases. In N1, spe- 

ific patterns start to be more frequent, increasing where the pa- 

ient enters a deeper sleep state N2. For N3, two particular pat- 

erns arise ( #1 and #24 ), they have a higher frequency than the 

est which are principally close to zero. This behavior is given be- 

ause, in an awake state, EEG signals have many superimposed fre- 

uencies, being similar to white noises [29] . This results in the ne- 

essity of using many different motifs to map the signal, tending 

he PDF patterns to be uniform. As the person falls asleep, the 

rain states arise low-frequency waves persistent in time. Partic- 

larly, in N1 alpha waves (8–12 Hz) decreases, increasing theta 

aves (4–7.5 Hz) and starting to appear Low Voltage Mixed Fre- 

uency (LVMF) waves. In N2 theta waves are more prominent in 

ime than N1. N3, the deepest sleep stage, presenting over 50 per- 

ent delta waves (0–4 Hz) activity [63] . This tendency to exhibit 

ower frequencies results in the loss of PDF uniformity because 

e need fewer specific patterns to map the signal. This can be 

een more clear in N3 where the predominant patterns are #1 and 

24 , which correspond to the ascending �(3 , 1) 
1 

= [012] and de- 

cending �(3 , 1) 
24 

= [210] motif. The REM state has a similar PDF to 

1 because REM presents theta waves -low-amplitude and mixed- 

requency EEG activity- not much different to the waves found in 

1 and N2 stages. In addition, we can focus on patterns #1 and 
a

5 
24 seeing the increase in the occurrence frequency patterns from 

he Awake state to N3, on average, shows good performance dis- 

inguishing between these states. The study of these two patterns 

ould also be used as features of the system. 

.2. Information quantifiers analysis 

The following analysis consists of the application of the five 

easures introduced in Section 2 over the PDF rank vectors. 

ig. 3 depicts a boxplot for A) MPR statistical complexity C MPR , B) 

ermutation entropy H, C) Fisher information F , D) permutation 

empel-Ziv Complexity C LZ and E) permutation Min-entropy R ∞ 

. 

n Table 1 we present the quantifiers average values over all pa- 

ients. The five measures show a remarkable distinction between 

he different sleep stages. C MPR has lower values for subjects in an 

wake state, increasing as the subjects enter a deeper sleep state. 



D.M. Mateos, J. Gómez-Ramírez and O.A. Rosso Chaos, Solitons and Fractals 146 (2021) 110798 

Fig. 3. Information quantifiers for different sleep Stages. A) MPR statistical complexity ( C MPR ), B) normalized Shannon entropy ( H), C) Fisher information ( F), D) permutation 

Lempel-Ziv complexity ( C LZ ), E) permutation Min-Entropy ( R ∞ ). The violin plots were estimated considering the totality of the 106 patients with all their epochs. All the 

measures used show a clear differentiation between sleep states. The Bandt-Pompe parameter used were D = 4 and τ = 1 , similar results were found using D = 5 and τ = 1 . 

Table 2 

Information quantifiers p-value between two different sleep states. The statistical 

method used was the Left-tailed Wilcoxon rank sum test. The quantifiers can sig- 

nificantly distinguish the sleep states except for the case REM-N1. 

H R ∞ C MPR F

Awake REM 5 . 6 × 10 −5 0.003 1 . 9 × 10 −5 7 × 10 −7 

Awake N1 5 . 7 × 10 −4 0.1 3 × 10 −5 7 × 10 −7 

Awake N2 1 × 10 −6 1 × 10 −5 7 × 10 −7 6 × 10 −5 

Awake N3 7 × 10 −7 7 × 10 −7 7 × 10 −7 5 . 6 × 10 −5 

REM N1 0.148 0.011 0.168 0.637 

REM N2 7 . 4 × 10 −5 0.001 6 . 4 × 10 −5 2 × 10 −4 

REM N3 7 . 05 × 10 −7 7 × 10 −7 1 . 9 × 10 −7 3 . 3 × 10 −6 

N1 N2 2 . 4 × 10 −6 6 . 4 × 10 −6 1 . 9 × 10 −6 3 . 4 × 10 −4 

N1 N3 7 × 10 −7 7 × 10 −7 1 . 9 × 10 −7 3 . 9 × 10 −5 

N2 N3 2 . 3 × 10 −6 7 × 10 −7 1 . 9 × 10 −5 8 × 10 −3 
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e obtain similar results for F but the values corresponding to 

he awake state present less dispersion. On the contrary, H, C LZ 

nd R ∞ 

, show higher values for the awake state, decreasing in 

EM, N1, and N2 being a minimum for N3. H and C LZ present less 

alue dispersion in comparison with the other quantifiers. Table 2 

hows the p-value between two state for all quantifiers. All the 

easures can distinguish significantly between every two states, 

xcept for the EEG-N1 case. 

In the awake state, we saw that the distribution of the patterns 

s similar to a uniform PDF ( Fig. 3 A). This makes the distance be-

ween the signal PDF and the uniform PDF minimal, giving low 

 MPR values. A similar result is obtained for the F , due to no lo- 

al changes appearing in the PDF of the signal. In the case of H
r R ∞ 

, which basically quantify the system’s uncertainty, the val- 

es remain maximum because all the states of the signal present 

qual probabilities. C LZ show marked variability in the occurrence 

f the permutation patterns resulting in highly complex values due 

o the impossibility of “compressing” the analysed signal. On the 

ther hand, as the person falls asleep, the uniformity of the PDF 
6 
ank vectors is lost (see Fig. 3 B,C,D). This causes the values of C MPR 

nd F to increase. reaching the maximum in the N3 state. Addi- 

ionally, the emergence of specific patterns with high probability 

especially in N3) in these stages, causes a reduction in the en- 

ropic measures ( H and R ∞ 

). In the same way, when slow waves 

ppear in the N2 and N3 states, the EEG signal violin plot becomes 

ore monotonous and less complex, giving lower values of C LZ . 

.3. Causality complexity/information-entropy maps 

Complex/information-entropy maps provide a richer in- 

ormational repertoire of the system than single quantifiers 

45,62,64,65] . In addition, the representation of the results in 2D 

aps allows a better understanding of the dynamics of the signals. 

n this work we apply three different com plexity/information- en- 

ropy maps to the study of EEG signals, H × C MPR [62] , H × F
46] and H × C LZ [65] . 

Fig. 4 displays a compilation of the results considered here in 

he H × C MPR location. The continuous lines represent the curves 

f maximum and minimum statistical complexity, C max 
MPR 

and C min 
MPR , 

espectively, as functions of the normalized Shannon entropy [56] . 

very symbol in the figure represents the mean value distribution 

or each sleep state. To show entropy-complexity values are not 

aused by random behaviour of the signal, the recording for all 

atients were randomized and analyzed. The mean value of the 

andom series was represented in the plane (red star) which lies in 

he extreme maximum entropy and minimum complexity. Signals 

hat present this kind of behaviour are as different as possible 

rom white noise [62] . Awake signals have more complexity and 

ess entropy than random signals but still remain in the plane 

ocation where noise signals (poorly structured) lie [62] . When 

he sleep state changes to N1, N2 and N3, the complexity tends 

o increase and the entropy to decrease, moving the values to the 

entre of the plane. 
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Fig. 4. Entropy–Complexity plane ( H × C MPR ) for the 5 different sleep states. Each symbol represents the mean value over 106 subjects using the permutation parameters 

D = 4 and τ = 1 . The awake states are located in a region with greater entropy and less complexity. As the subject falls into deeper sleep stages (N1, N2, and N3) the 

complexity increases and the entropy decreases. REM is found in intermediate values of complexity and medium-high entropy. All states are clearly discriminated from the 

randomized signals (red star) which are at the end of the plane. Similar results were obtained for the parameter setting D = 5 and τ = 1 . 

Fig. 5. Shannon–Fisher information plane ( H × F) for the 5 different sleep states. Each symbol represents the mean value over the 106 subjects using the permutation 

parameters, D = 4 and τ = 1 . The awake values lie in the high entropy, low information region. REM and N1 states are located in a region with greater entropy and middle 

Fisher values. As the subject remains in deeper sleep stages the Fisher values start to increase with the entropy decreasing. Similar results were obtained for the parameters, 

D = 5 and τ = 1 . 
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Next, we analyse the signal through the Fisher information - 

hannon plane, H × F . This plane allows quantifying the global 

ersus local characteristic of the time series generated by dy- 

amical processes [46] . The plane can distinguish between re- 

ions corresponding to different sleep states, separating the non- 

EM from the REM and awake state. However, the REM and 

1 states are indistinguishable from each other, especially for 

isher information values. The awake stage shows low F and 

igh H. As the sleep becomes deeper, the Non-REM stages are 
7 
istinguished by having high values of F and low values of H
 Fig. 5 ). 

Finally, we use a plane which combines statistical measures 

Shannon entropy) with an algorithmic one (Lempel-Ziv complex- 

ty). This H × C LZ plane has been used to analyse EEG signals in 

ifferent states of consciousness, giving excellent results charac- 

erising different consciousness states such as awake, seizure, or 

oma [64] . Observing Fig. 6 , the plane clearly distinguishes all 

leep states. The complexity-entropy values live on a straight line 
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Fig. 6. Shannon entropy – Lempel-Ziv complexity plane ( H × C LZ ) for the 5 different sleep states. Each symbol represents the mean value over the 106 subjects in the study, 

using the permutation parameters D = 4 and τ = 1 . The awake stage presents the maximum value of entropy and complexity. As sleep gets deeper, the complexity and 

entropy decrease been minimum in N3. Similar results were obtained for the parameters, D = 5 and τ = 1 . 
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ver the plane, this is because for random, stationary, and ergodic 

ignals –which is the case for EEG under certain conditions [29] –

he Shannon entropy rate tends to the Lempel-Ziv complexity 

57] . The complexity and entropy decrease as the subject falls 

sleep, being minimal for N3. Unlike the other planes, in this 

ase, the values of REM and N1 are clearly differentiable. This 

enders clear the importance to combine measures for extracting 

ew information about the signal. Similar results were found in 

ntracranial EEG recording [64] . 

. Discussion 

When the brain is in a wakefulness state, it needs to handle in- 

ernal and external information, requiring to be able to access its 

unctions globally. Because of this, the electrical activity becomes 

ore complex with greater variability as observed in the brain’s 

aves. This variability in the signal makes that a greater number 

f motifs are required to map the brain signal, resulting in the per- 

utation vectors PDF converging towards uniformity. This is trans- 

ated into high values of entropy, both Shannon H and Renyì R ∞ 

. 

hese results are consistent with previous research [28,66] . MPR 

omplexity shows that signals in the awake state tend to be similar 

o white noises [29] . Due to the uniformity of the PDF ranks vec-

ors, Fisher’s information presents minimal values. As observed for 

he awake state, the complexity of Lempel-Ziv is high due to the 

ecessity of a large number of different patterns needed to encode 

he signal. Similar results were found in previous studies [35,64] . 

As sleep progresses, most of the vital signals decrease (respira- 

ion, blood pressure, etc). The cortex becomes less active, so the 

EG signal becomes slower and more repetitive with a marked 

redominance of delta waves. Delta waves are slow and more 

onotonous, making that the number of patterns required to map- 

ing the signal decreased. Some motifs become more important 

han others, especially those mapping the complete ascent or de- 

cent of the signal. This is reflected in a decrease in the signal 

ntropy both H and R ∞ 

. Due to this regularity in the EEG, the 

ode required to reconstruct the signal becomes smaller, producing 

 drop in the permutation Lempel-Ziv complexity. Similar results 
8 
ere found in previous works in intracranial EEG. This behaviour is 

ot exclusive to the quantification by Rank vectors, similar results 

ave been obtained different quantification techniques [66,67] . The 

redominance of slow waves in No-REM states produces a sort of 

rake in the uniformity PDF giving more probability to specific pat- 

erns, which in turn results in an increase in MPR complexity and 

he Fisher information. 

It can be clearly observed that Permutation Entropy values are 

igher for REM state compared to N3. These results are similar to 

hose obtained in intracranial EEG studies in rats [68] . However, in 

hat work they show PE values of REM state depend on the sam- 

ling frequency of the signal. For low sampling frequencies, lower 

han 500 Hz (which is our case), the REM PE values are higher 

han the NREM ones (we call it N3), but for high sampling fre- 

uencies, higher than 500 Hz, the NREM values are higher than 

he REM ones. That is why it is important to consider the sampling 

requency of the equipment when analysing the data. 

We have seen that the differentiation between REM and N1 

tatus is not an easy task (see 3 ). This is to be expected consid-

ring that the REM signal contains frequencies that are present 

oth in the “awake” state and in the lighter stages of sleep N1 

28] . Activity in 11–16 Hz. (sleep spindles) in N1, and more abun- 

ant alpha activity (8–13 Hz) in REM sleep mean that these two 

tages present activity at an overlapping frequency range, which 

xplains the proximity of the information values obtained for these 

wo stages. Difficulty in separating N1 and REM sleep has also 

een encountered using other measures [69] . Despite the similar- 

ties between REM and N1, there are still enough differences be- 

ween them. These can be quantified by R ∞ 

or better through the 

omplexity/information-entropy planes, especially for the H × C LZ 

lane shown here. 

The use of complexity/information-entropy planes provides a 

etter data visualisation tool, containing information about the sig- 

als which are impossible to get applying each measure individu- 

lly. The three planes presented in this work show a clear differ- 

ntiation over all sleep states. In particular, they allow us to differ- 

ntiate N1 from REM. It is thanks to the combination of different 

pproaches that these results could be obtained. For example, i) 
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tatistical and algorithmic measures ( H × C LZ ), ii) local and global 

easures ( H × F) or iii) order and disorder dynamics ( H × C MPR ). 

This work makes a substantiated case for the use of 

nformation-theoretic tools for the analysis of the one-channel EEG 

ignals, complementing the visual inspection adopted by electro- 

hysiologists. The information quantifiers used have proven highly 

ffective for the detection and classification of sleep states. Pro- 

ided the possibility of working with short sequences, its simplic- 

ty, and efficient calculation make them suitable to use in clinical 

ettings requiring real-time. This feature would allow to develop 

echnical devices of use in sleep studies, without the subject hav- 

ng to check in a hospital or sleep clinic. Given the importance that 

leep cycles have in people’s health, in future work we will focus 

n applying these analytical methods for the study of pathological 

EGs. To that we will explore data from patients with insomnia, 

ircadian rhythmic sleep-awake, and parasomnia among others, us- 

ng these quantifiers to validate them as potential biomarkers. 

. Conclusion 

The study of sleep stages is of vital importance to understand 

oth healthy and pathological conditions. Dysfunctions in sleep cy- 

les generate problems such as fatigue, muscular pains, and at- 

ention problem among others. Because of that, the detection and 

roper characterisation of sleep stages are of paramount impor- 

ance. In this work we have been able to characterise the dynam- 

cs of different sleep stages in an easy and fast way, using mea- 

ures borrowed from Information Theory. Our results show that 

he information-theoretic measures studied here -Shannon’s en- 

ropy, MPR statistical complexity, Fisher information, Renyí Min- 

ntropy and Lempel-Ziv complexity- represent a promising avenue 

o foster our understanding of sleep cycles on a quantitative basis, 

acilitating the development of low-cost equipment for signal pro- 

essing applied to human sleep. In particular, we find that the in- 

ormation quantifiers proposed here can be effectively used for the 

etection and classification of sleep states. Furthermore, the quan- 

ifiers are robust to short signal sequences and fast and straight- 

orward to compute which make them suitable to be used in real- 

ime analysis of sleep recordings. 
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