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In [1] Dorian Aur heatedly criticizes what he calls the

‘‘current neurophysiological doctrine,’’ which relies on the

measurement of neural events on a millisecond time scale,

that is, spikes or action potential. Aur’s intention is no

other than to terminate one of the most fundamental ideas

in neuroscience since the pioneering work of Edgard

Adrian in the 20’s, the functional relevance of these nerve

impulses as carriers of information.

In Aur’s view, the spike timing and other related forms

of neural coding expressed in terms of temporal observ-

ables are no more than epiphenomena. The principles of

neural computation must be found in the spatial distribu-

tion of electrical processes that occur during the action

potential. Thus, ‘‘current mainstream provides a weak

understanding of computations performed in the brain,’’

because it ignores the ‘‘hidden information’’ embedded in

the complex microscopic interactions inside the cell, dur-

ing the millisecond time frame of a spike.

Thus, ‘‘intrinsic computational processes’’ are decided at

a much slower time scale and smaller space scale than is

commonly assumed in neurophysiology. Neuroelectrody-

namics (NED), a new theoretical framework that borrows

from Hamiltonian mechanics, Thermodynamics, Quantum

Physics and non-Turing computation, is surmised as the

‘‘change in paradigm required’’ to understand ‘‘brain

language.’’

This review highlights the methodological pitfalls and

conceptual errors introduced in the model suggested by

Aur. First, it is shown that the mathematical equations

proposed are not adequate for the studied system, that is,

the brain, and second, a discussion on the aftermath of the

dismissal of spike trains as carriers of relevant information,

as stated by Aur, is sketched.

First, with regard to the methodological aspects, Aur

makes a claim for ‘‘adequate techniques’’ in order to

understand ‘‘the neuron’s language.’’ For Aur, the diversity

found in actual recording of action potential propagation in

nerve cells needs to be explained in terms of the spatial

distribution of electrical charges inside the neuron. The

spike directivity vector is presented as the tool put on place

to reveal the hidden information laying in the intracellular

interactions inside the cell. Thus, while mainstream neu-

rophysiology assumes that it is the timing of the spike that

matters, Aur announces a new approach to understand

neural computation, up to now unperceived by neurophy-

siologists, in which meaningful patterns are built upon

spike directivity vectors that quantify transient charge

density taking place during action potential.

The methodological implications of Aur’s approach are

of a devastating complexity, owing to the stratospheric

dimensionality of the neuron models needed to capture the

dynamics of ions, molecules and proteins inside every

single cell. It is hard to imagine how one may come to grips

with the dynamics of such a gargantuan system. There are

millions of proteins inside each neuron! Surprisingly

enough, Aur’s bet is Hamiltonian mechanics, which is

mainly geometry in phase space [2].

Although Aur’s modeling choice is entirely legitimate,

the actual model proposed does not apply neither aims at

the physical reality for which claims to be conceived, the

brain.

It goes without saying that a model is always a simpli-

fied description of some features of a system, for example

point neuron models are simplifications unable to simulate
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a number of phenomena, those related with the cell’s

morphology. For a recent review, see [3].

The problem is that for Aur’s model to work, at least a

two-fold scenario has to hold, and none of the two is true.

On the one hand, following Aur formulation of the brain

dynamics using Hamiltonian mechanics, the brain needs to

be a non-dissipative system, and on the other hand, in order

to understand the behavior of the system, we need to be

able to find the solutions of the equations.

The equations that Aur formulates are for non-dissipa-

tive Hamiltonian systems, while the brain is a dissipative

system.

A dissipative system has bounded free supply (energy,

matter), that is to say, the amount of energy or matter that

flows out of the system to the environment cannot be

arbitrarily large. From a thermodynamic setting, all sys-

tems are dissipative because subjected to the second law of

thermodynamics, so a dissipative system necessarily

absorbs a fraction of its supplied energy and transforms it

(losses it), for example, into heat [4, 5].

Thus, dissipativity is a property of open systems, and

only under the unrealistic assumption that the brain is

closed or isolated, are Aur’s equations applicable.

Aur is half right when he states that ‘‘chaos can naturally

develop in Hamiltonian systems with many degrees of

freedom.’’ Hamiltonian systems, with only 2 (or more)

degrees of freedom and non-integrable, may exhibit chaos

[6]. The integrability is, therefore, critical in Hamiltonian

systems with chaotic regimes; however, this is never

mentioned.

Needless to say the equations need to have solution, and

Aur never says which method we may use to solve the

phenomenal number of nonlinear equations, very vaguely

described in the paper (the reader is left to his or her own

imagination to fill up parameters like I, w, H, e in equations

(1) and (2)).

Thus, one may easily see why Aur defends the view that

‘‘Turing framework is limited,’’ something radically dif-

ferent, indeed, must be conceived in order to compute

the 6M1010 equations in the model of the brain suggested

by Aur (M is the number of relevant intracellular entities

such as proteins or ions, and 61010 are the number

of equations for the momentum and position of each of the

1010 neurons in the human brain). It is worth noting

how far the three equations in Lorenz model of chaos [7],

or the four-dimensional Hodgkin-Huxley neural model,

and its simplified versions, for example, Morris-Lecar or

FitzHugh-Nagumo [8], are from this.

Second, with regard to the conceptual and experimental

aspects, we must admit that in neuroscience, terms like

‘‘information processing’’ or ‘‘neural code’’ are used in a

rather general and vague way. This is an indicator that

researchers have not been able to provide a formal theory

that makes unnecessary use of these and other concepts in a

metaphorical sense.

Spikes are temporal events, used to study neural pro-

cesses in a given coding framework, for example, coinci-

dence detection [9], STDP [10] or oscillations [11].

Using the distinction made by the philosopher C. S. Peirce

[12] between symbol, token and type, a spike is a symbol

realized in a physical entity (symbol as a token) that may have

a semantic content (symbol as type).

In this view, spikes are symbols, that is, measurement

values that provide information of the system, but spikes

are not necessarily the unique relevant tokens; other events

may happen to be functionally relevant for the system, for

example, bursts, local action potential or even the velocity

of electrical charges inside the cell, as Aur (and only him)

suggests.

Temporal coding is realized in the neural system; this is

a fact supported by numerous experiments [13, 14, 15] just

to cite a few. Thus, it is uncontroversial that neurons or

assemblies of neurons are able to transmit the temporal

structure (spike pattern) of a given stimulus.

A different issue is whether a spike pattern carries

information that allows us to understand the message being

encoded. It is unreasonable to assume that all the relevant

information processed in a neural system is encapsulated in

time spikes. Thus, the point made by Aur that, ‘‘the tem-

poral coding framework approximates only a small part of

weak interactions and ignores strong interactions that occur

in the cell’’ must be considered very attentively. Patterns of

molecular processes with slower temporal scale of spikes

might be relevant for neural coding.

The intracellular perspective has been suggested by

systems biologists like Dennis Bray [16, 17, 18] who

claims a functional role for proteins, that is, biochemical

circuits of proteins may perform computational tasks like

information storage, or Uri Alon’s hint ‘‘the cognitive

problem of the cell’’ on how special proteins called tran-

scription factors produce an internal representation of the

environment [19]. While it is perfectly possible to have a

neuron that represents some external feature without any

observable change in its firing rate [20], the overwhelming

evidence for the existence of timing patterns of spikes,

which mediate in neural information processing, disproves

Aur’s statement ‘‘temporal features carry little information

about object categories, behavior, or semantics’’ [21]. A

number of studies relating timing pattern and neural

information processing exist for the visual system [22],

olfactory system [23, 24], auditory system [25] or the

hippocampus [26, 27, 28], just to cite a few cases.

What is being questioned here is which spatio-temporal

scale we are considering as relevant. Whether patterns of

spikes have a functional role or not, it is strictly an

empirical issue. In this regard, to study neural systems
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within an internal perspective, rather than the external

view, which relies on averaging neural responses, for

example, spikes elicited from extracellular events, may

provide important insights on the actual mechanisms

underlying information processing in the brain.

The organistic or internal perspective is conducive to

think in inferential terms of what new information can be

inferred from a single given observation. It is here where

Aur’s shift toward the characterization in mathematical

terms of intracellular components, which may be relevant

to explain the informational processing capabilities of the

cell, acquires some value.

Nevertheless, NED itself is riddled with methodological

and conceptual pitfalls, in addition to a lack of empirical

support. This, in effect, invalidates it as a serious candidate

to come grips with the neural coding problem, that is, the

understanding of those entities and physical processes in

the brain, which convey relevant information for the

behavior and adaptation of the organism in a certain milieu.
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