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Abstract
Here, we address the hemispheric interdependency of subcortical structures in the aging human brain. In particular, we 
investigated whether subcortical volume variations can be explained by the adjacency of structures in the same hemisphere 
or are due to the interhemispheric development of mirror subcortical structures in the brain. Seven subcortical structures 
in each hemisphere were automatically segmented in a large sample of 3312 magnetic resonance imaging (MRI) studies of 
elderly individuals in their 70s and 80s. We performed Eigenvalue analysis, and found that anatomic volumes in the limbic 
system and basal ganglia show similar statistical dependency whether considered in the same hemisphere (intrahemispheri-
cally) or different hemispheres (interhemispherically). Our results indicate that anatomic bilaterality of subcortical volumes 
is preserved in the aging human brain, supporting the hypothesis that coupling between non-adjacent subcortical structures 
might act as a mechanism to compensate for the deleterious effects of aging.
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Introduction

The interest and use of understanding the differences 
between the two brain hemispheres go back a long way 
(Lashley 1958; Sperry 1984; LeDoux et al. 2020). Two 
of the most revelatory discoveries are the Broca area and 
Sperry split-brain experiments. Broca found that a patient 
who could only utter the syllable “tan” had a large lesion 
in the left posterior inferior frontal gyrus that was subse-
quently named the Broca’s area (Ocklenburg and Gunturkun 
2012). Hemispheric asymmetry and its importance in cog-
nition acquired a dramatic turn with Sperry’s split-brain 
experiments in cats, monkeys, and later on epileptic patients. 
Sperry showed that disconnecting the two hemispheres by 
severing the corpus callosum resulted in making the two 
hemispheres functionally independent (Sperry 1961).

However, and as it could not be otherwise given the stag-
gering complexity of the brain, the lateralizations, and ana-
tomic asymmetries cannot be accounted for within a simple 
narrative, for example, the left–right dominance (Nielsen 
et al. 2013) and conclusions may vary depending on the 
methodology applied, and the brain region or systems of 
interest. For instance, the increasing availability of data from 
volumetric brain imaging has made it possible to study the 
effect of lateralized functions on subcortical asymmetries 
(Morillon et al. 2010; Kang et al. 2015; Rane et al. 2017; 
Narvacan et  al. 2017; Núñez et  al. 2018; Esteves et  al. 
2019) and to postulate lateralization alterations as poten-
tial endophenotypic markers in chronic brain disorders such 
as schizophrenia (Dennison et al. 2013; Roalf et al. 2015; 
Okada et al. 2018) and other brain conditions, including 
Alzheimer’s disease (Giannakopoulos et al. 1994), dyslexia 
(Leonard and Eckert 2008) and autism (Floris et al. 2020).

Evolutionary biology explains lateralization in the brain 
as a trade-off between bilateral symmetry and hemispheric 
asymmetry to cope with the external world. As suggested 
by Palmer (2004), bilateral symmetry may be the default 
condition, noticing that the mid-plane of developing organ-
isms has anterior–posterior and dorso-ventral axes but there 
is no left–right axis. In a world in which predators may come 
from either side—right and left—sensory asymmetry could 
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come with the high price of being more vulnerable to pred-
ators approaching from the weak side. Along these lines, 
bilateral symmetry could be the result of natural adaptation. 
Nevertheless, the brain and other organs count with left-
right asymmetries, such asymmetries could have evolved 
when proving to be more adaptive to the environment. For 
example, bilateral symmetry in limbs and legs is adaptive 
because it can produce linear movement. Thus, directional 
locomotion impinges a front–back asymmetry conserving 
the left–right symmetry.

Sensorimotor processing in the brain is overall organized 
symmetrically; however, asymmetries such as handedness 
are compatible with the cerebral organization (Corballis 
2009; Willems et al. 2010; Neubauer et al. 2020). Whether 
intrahemispheric coupling is more predominant than bilat-
eral symmetry, or lateralized interhemispheric components 
are more tightly coupled than intrahemispheric components, 
is still poorly understood (van der Knaap and van der Ham 
2011).

Automatic segmentation of subcortical structures can 
produce important insights regarding the anatomic sym-
metric organization of the brain (Hervé et al. 2013; Kong 
et al. 2020). Subcortical structures are groups of neural for-
mations deep within the brain, among these structures we 
find the limbic structures and the basal ganglia. The basal 
ganglia subcortical nuclei—caudate, putamen, pallidum—
are located near the thalamus which is part of the limbic 
system. The limbic system refers to a group of subcortical 
nuclei—hypothalamus, thalamus, amygdala, hippocampus, 
accumbens—that supports a large variety of functions and 
behaviors such as long-term memory and affective responses 
(Shaw and Alvord Jr 1997; McLachlan 2009). The subcor-
tical nuclei that compose the basal ganglia support motor 
control but they are also involved in motor learning, execu-
tive actions, and affective responses (Albin et al. 1989; Kre-
itzer and Malenka 2008). Age-related changes of the limbic 
system in normal populations have been shown using dif-
ferent imaging techniques, Diffusion Tensor Imaging (Gun-
bey et al. 2014), MRI (Callen et al. 2001; Fjell et al. 2015). 
However, a systematic and quantitative assessment, based 
on a large sample, of global symmetry in subcortical brain 
structures in the elderly brain is still missing.

In this study, we perform volumetric segmentation in over 
3000 magnetic resonance imaging (MRI) studies in healthy 
elderly subjects, obtaining the volumetric estimation of the 
following seven subcortical structures: caudate, pallidum, 
putamen, thalamus, hippocampus, amygdala, and accum-
bens. Both global and lateralized subcortical brain symmetry 
are quantitatively assessed using correlation matrices and 
Eigenvalue analysis.

The rationale of selecting subcortical structures across 
and within hemispheres is to determine whether correla-
tion based on locus (vicinity of structures) or genus (type 

of structure) is maintained in the brain of elderly subjects. 
In particular, we investigate whether volumetric variation 
can be explained with adjacency of structures in the same 
hemisphere, or is due to interhemispheric development of 
mirror subcortical structures in the brain.

Methodology

The dataset used here comes from a single-center, obser-
vational cohort study (Gómez-Ramírez et al. 2020a). The 
participants are home-dwelling elderly volunteers, aged in 
their 70s and 80s, without relevant psychiatric, neurological, 
or systemic disorders. Of the initial 1213 subjects, those who 
were diagnosed with MCI or dementia plus those lacking a 
brain MRI were excluded from our analysis, resulting in a 
cohort of 890 healthy elderly subjects. The subjects were 
assessed yearly for a total of five years resulting in 3312 
assessments, with the number of yearly visits per subject 
varying from 2 to 5.

After signing informed consent, the participants under-
take a yearly systematic clinical assessment, including medi-
cal history, neurological, neuropsychological exam, blood 
collection, and brain MRI. Apolipoprotein E (APOE) geno-
type was studied with total DNA isolated from peripheral 
blood following standard procedures. Ethical approval was 
granted by the Research Ethics Committee of Instituto de 
Salud Carlos III, and written informed consent was obtained 
from all the participants. The authors assert that all pro-
cedures contributing to this work comply with the ethical 
standards of the relevant national and institutional commit-
tees on human experimentation, and with the Helsinki Dec-
laration of 1975 and its later amendments.

Imaging study

The imaging data were acquired in the sagittal plane on a 
3T General Electric scanner (GE Milwaukee, WI) utiliz-
ing T1-weighted inversion recovery, supine position, flip 
angle 12◦ , 3D pulse sequence: echo time Min. full, time 
inversion 600 ms., Receiver Bandwidth 19.23 kHz, field of 
view = 24.0 cm, slice thickness 1 mm and Freq × Phase 
288 × 288 . The preprocessing of MRI 3 Tesla images in this 
study consisted of generating an isotropic brain image with 
non-brain tissue removed. We used the FreeSurfer pipeline 
(recon-all FreeSurfer cortical reconstruction and parcella-
tion process 2017) as the initial preprocessing step in the 
computational segmentation procedure. The postprocess-
ing was performed with FreeSurfer (Fischl 2012), version 
freesurfer-darwin-OSX-ElCapitan-dev-20190328-6241d26 
running under Mac OS X, product version 10.14.5.

FreeSurfer includes tools for processing structural MRI, 
functional MRI, diffusion MRI and PET data. Here, we 
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are focusing on structural MRI, in particular subcortical 
segmentation. The cross-sectional analysis starts with the 
surface-based stream (Dale et al. 1999; Fischl et al. 1999), 
where the skull is stripped, the cerebellum and brain stern 
are removed, the two hemispheres are separated and brain 
voxels are classified as white matter or gray matter and CSF 
(Fischl et al. 2002, 2004). Then, the volume-based stream 
segments the different subcortical structures of the brain 
using a subject-independent probabilistic atlas. The Free-
Surfer training set consists of 40 MRIs, spread in age (10 
healthy young subjects, 10 healthy middle-aged subjects, 
and 10 healthy elderly subjects) and including pathological 
brains (10 subjects with AD) (Desikan et al. 2006).

The stages in the FreeSurfer pipeline (in order) are 
surface-based stream, with skull-stripping cerebellum and 
brain stern removal, two hemispheres separation, and brain 
voxels classification (white matter, gray matter, and CSF), 
and finally brain segmentation, cortical and subcortical. The 
subcortical segmentation includes seven structures in each 
hemisphere, namely, thalamus, putamen, hippocampus, cau-
date, pallidum, amygdala, and accumbens.

For the sake of illustration, Fig. 1 shows the intracranial 
volume segmentation obtained for four subjects in the study 
out of a total of 3312 MRI scans.

Anomaly detection with the Isolation Forest algorithm

One premise of big data applied to brain imaging research 
is that given enough data, we may be able to characterize 
brain atrophy and fit the data to a model that makes predic-
tions about the dynamics of the atrophy, that is, not only 
identify atrophy but also its progression in an individual 
basis.

Manual segmentation of the brain is a time-consuming 
and prone to error task (Vos et al. 2019; Despotović et al. 
2015; Firbank et al. 2008; Collier et al. 2003). The segmen-
tation of one volume may require an entire day of work from 
a dedicated expert. Hence, the use of manual segmentation 
on a dataset as ours, in the order of thousands of MRI scans, 
is not an option. The main advantages of automatic proce-
dures are at least two: i) the lack of bias inherent in manual 
segmentation, two different human experts may produce 
very different estimates for the same image, and ii) auto-
matic procedures are time-saving. On the other hand, auto-
mated quality control is paramount to avoid the inclusion of 
inaccurate measurements in the posterior analysis. Anomaly 
detection (Chandola et al. 2009) is an established approach 
in data analysis to identify observations with suspicious sta-
tistical properties when compared to the majority of data.

Fig. 1  Coronal view of the 
subcortical segmentation real-
ized in 4 different subjects in 
the study. a, d contain the labels 
of the subcortical structures-
clusters of cell bodies buried in 
white matter area; Ca: Caudate, 
Pu: Putamen, Pa: Pallidum, Th: 
Thalamus, Am: Amygdala, Hp: 
Hippocampus and Ac: Nucleus 
Accumbens
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Isolation Forest (Liu et al. 2008) is an ensemble method 
(Breiman 1996) that has shown strong performance as an 
outlier detector in a variety of datasets (Domingues et al. 
2018; Alaverdyan 2019). The algorithm works by selecting 
features and randomly selecting a split value between the 
maximum and minimum values of the selected features. The 
number of splitting required to isolate a sample is equal to 
the path length from the tree’s root node to the tree’s leaf 
node. By averaging the path length over a forest of random 
forests, we get a measure of normality, specifically a forest 
with shorter path lengths for particular samples indicates 
that the samples are likely to be anomalies.

We perform anomaly detection using the scikit-learn Iso-
lation Forest implementation (Pedregosa et al. 2011). The 
parameters number of estimators, number of samples, and 
contamination level are set to the default values.

Statistical analysis

Table 1 shows the description of the variables included in 
the study: age, sex, Apolipoprotein E (APOE), handedness, 
and the volumetric estimates of the subcortical structures for 
a total of 3312 MRI studies.

To investigate whether the conditions—sex, handedness, 
and Apolipoprotein E (APOE)—can explain the variance in 
the volumetric estimate of the difference between the left 
hemisphere (LH) and the right hemisphere (RH), we build 
a regression model for each subcortical structure and condi-
tion as shown in Eq. (1). Thus, we split the total variation 
of the dependent variable, the difference between the left 
and right hemisphere volume of each subcortical structure, 
into sources of variation to find out whether the independent 
variable (sex, Apolipoprotein E (APOE), handedness) has 
a significant effect on the dependent variable (interhemi-
spheric volumetric difference of subcortical structures).

The OLS regression model is shown in Eq. (1)

 where SL is the volume of the LH subcortical structure S, 
SR is the volume of the RH subcortical structure S and SD is 
the volumetric normalized difference between the two hemi-
spheres in structure S. X, H and A represent the variables 
sex, handedness and Apolipoprotein E (APOE) respectively 
codified as categorical.

Aggregate correlation analysis

The correlation matrix describes the degree to which any 
pair of two random variables in a set of random variables 
tends to deviate from their expected values. Thus, the ele-
ment i,  j in the correlation matrix M, Mi,j contains the 
correlation coefficient between the ith random variable 

(1a)SD = SL − SR ∼ C(X) + C(H) + C(A),
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and the jth one. The correlation matrix can be computed 
from the covariance matrix if we are interested in both the 
strength and direction of the linear relationship between 
any pair of variables in the dataset. The correlation matrix 
is, thus, a collection of correlation coefficients expressing 
the standardized covariance between variables in a dataset.

To study whether statistical dependence between struc-
tures can be explained based on contiguity of structures 
(intrahemispheric) or in terms of the bilateral development 
of the brain (interhemispheric), we extract from the cor-
relation matrix � that contains the correlation coefficients 
between all variables, three correlation matrices, two 
intrahemispheric and one interhemispheric. Accordingly, 
from � , we obtain �R or the correlation matrix of the struc-
tures located in the right hemisphere, �L or the correlation 
matrix of the structures in the left hemisphere, and the 
bilateral correlation matrix �B which contains the correla-
tion between any pair of structures as long as they are in 
different hemispheres. All three matrices �L,�R , and �B are 
7x7 dimensional and the correlation matrix � is 14 × 14 
dimensional. This is shown schematically in Table 2.

A first approximation to assess the overall strength of a 
correlation matrix could be done by averaging all the cor-
relation coefficients, however, the average correlation will 
be biased and the average will tend to underestimate the 
true correlation. The Fisher transformation can overcome 
this problem and yield an unbiased estimate by performing 
the Z transformation of the correlation matrix, and then 
inverse transform the average. Formally, given the cor-
relation coefficient r between two variables, the Fisher’s 
z-transformation of r and the inverse transformation is as 
follows: Fisher z-transformation:

Accordingly, the total correlation of the intrahemi-
spheric correlation matrices (�L, �R) and the interhemi-
spheric correlation matrix (�B) shown in Table 2 can be 

(2a)z =
1

2
ln(

1 + r

1 − r
) = arctan(r),

(2b)r =
e2z − 1

e2z + 1
= tanh(z).

estimated using the Fisher z-transformation as shown sche-
matically in Eqs. 3a, 3b and 3c. 

Eigenvalue analysis

Since eigenvectors and eigenvalues uniquely define the 
covariance matrix, we can represent the covariance matrices 
in Table 2 by its eigenvectors and eigenvalues and therefore 
gain an understanding of the shape of the dataset.

We can map the n(n − 1)∕2 correlations among n vari-
ables in a correlation matrix into n eigenvalues and their 
associated eigenvectors, with the eigenvalues being linear 
functions of the underlying correlations. Importantly, when 
all correlations are positive, the first eigenvalue is approxi-
mately a linear function of the average correlation among the 
variables and tells us the amount of variance in the correla-
tion matrix that can be accounted for with a linear model by 
a single underlying factor. We can naturally extend this idea 
to the second, third, and so on, eigenvalues. Once we have 
computed the eigenvalues �i of a correlation matrix, we can 
compute the area defined by the cumulative eigenvalue func-
tion as an aggregate measurement of the total cumulative 
percentage of variance retained by each dimension (Eq. 4). 

 We can calculate the SL, SR and SB for each correlation 
matrix shown in Table 2, the cumulative curve F(�) would 
indicate the independence of the variables within each 
matrix, that is, the degree of independence of the subcortical 
structures in each hemisphere (SL, SR) and interhemispheri-
cally (SB).

Results

We use the Isolation Forest Algorithm (Liu et al. 2008) to 
remove outliers in the dataset using the sklearn implemen-
tation (Pedregosa et al. 2011). Isolation Forest is an unsu-
pervised learning algorithm for detecting anomalies. The 
algorithm explicitly isolates anomalous points in the dataset 
rather than detecting points that fall outside the “normal” 
profile. From the dataset free of anomalies detected by the 
algorithm, we select the cases diagnosed as healthy, that is 
to say, cases with a diagnosis of mild cognitive impairment 

(3a)PL = tan h(arctan h(𝜌L)),

(3b)PR = tan h (arctan h(𝜌R)),

(3c)PB = tan h(arctan h(𝜌B)).

(4a)S = ∫
�n

�1

F(�)d�.

Table 2  Decomposition of 
the correlation matrix into 
three submatrices, �

L
 selects 

pair of structures in the left 
hemisphere, �

R
 is the selection 

of pair of structures in the 
right hemisphere, and �

B
 is the 

correlation matrix of pair of 
structures located in different 
hemispheres

� LH RH

LH �
L

�
B

RH �
B

�
R



 Brain Structure and Function

1 3

or Alzheimer’s disease are removed to deal only with elderly 
healthy brains (See Supplemental Methods). The resulting 
dataset makes a total of 3312 MRI scans of healthy brains 
segmented to estimate the volume of seven subcortical struc-
tures, namely Thalamus, Putamen, Amygdala, Pallidum, 
Caudate, Hippocampus and Nucleus Accumbens.

Figure 2 shows the volume estimates of the subcortical 
structures. The structure with the largest volume is the Thal-
amus, followed by Putamen, Hippocampus, Caudate, Palli-
dum, Amygdala and lastly Accumbens. The size of the same 
structure in either hemisphere is very similar. For example, 
the mean distribution of the percentage difference between 
the right and the left hemisphere is −1.47% Thalamus, 0.3% 
Putamen, 0.8% Hippocampus, 1.76% Caudate, 1.38% Pal-
lidum, 1.57% Amygdala and 0.02% Nucleus Accumbens. 
The right hemisphere volume is on average slightly larger 
than the left hemisphere volume for all structures except the 
Thalamus.

In the analysis presented in Table 3, we focus on the effect 
of sex, Apolipoprotein E (APOE), and handedness in the 
preservation of symmetry for each subcortical structure, 
calculated as the difference between the volume for each 
hemisphere of the same structure (Eq. 1). We fit a regres-
sion model for each bilateral structure (thalamus, putamen, 
amygdala, pallidum, caudate, hippocampus, caudate) and 
conditions (sex, Apolipoprotein E (APOE), and handed-
ness). For the sake of simplicity, we show only the Prob 
(F-statistic) from the OLS regression results. Since the data 

are not balanced (different sample sizes for each group), we 
perform a type 3 sums of squares analysis. Both type 2 and 
type 3 sums of squares yield similar results (Seabold and 
Perktold 2010) which is due to the fact that the underlying 

Fig. 2  Boxplot of the seven 
bilateral subcortical structures 
segmented with FreeSurfer for 
3312 healthy subjects. The esti-
mated median volumes from the 
smallest to the largest structure 
are as follows: Accumbens R/L 
459.10∕457.10mm3 , Amygdala 
R/L 1399.31∕1252.65mm3 , 
Pallidum R/L 
1632.85∕1700.82mm3 , Caudate 
R/L 3379.04∕3202.93mm3 , 
Hippocampus R/L 
3312.00∕3312.00mm3 , Putamen 
R/L 3952.21∕3916.95mm3 , 
Thalamus R/L 
5798.49∕5946.30mm3

Table 3  Table with the analysis of variance using the F test to deter-
mine whether the variability between group means is larger than the 
variability of the observations within the groups

All the structures except the accumbens show significant bilateral 
volumetric difference between the two sexes (P << 0.001) . No struc-
ture is found to have significant differences (P < 0.01) among the 
three forms of Apolipoprotein E (APOE)—no �4 allele inherited, 
one �4 allele, and 2 �4 alleles inherited from both parents. Regarding 
handedness, thalamus and hippocampus (P < 0.001) show significant 
differences between the three groups—right handed, left handed and 
ambidextrous
*P < 0.05
**P < 0.01
***P < 0.001

P(F-statistic) Sex APOE Handedness

ThalamusD *** ***
PutamenD *** *
AmygdalaD ***
PallidumD *** **
CaudateD *** *
HippocampusD *** ***
AccumbensD
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assumption of type 2 of no interactions between factors 
holds (Langsrud 2003).

The results support the hypothesis of sex-related dif-
ferences in the symmetry of subcortical structures studied 
with the only exception of accumbens and amygdala. Stud-
ies of sex differences in the relative volume of subcortical 
structures have produced conflicting results with studies 
reporting differences in putamen, hippocampus, amygdala, 
thalamus, and pallidum (Ruigrok et al. 2014), while Ritchie 
et al. (2018) found no statistically significant differences in 
the hippocampus, caudate, and thalamus after adjusting for 
the difference in total brain size between men and women. 
The inconsistencies found in the literature on sex differ-
ences can be motivated by the use of different types of MRI 
scans, segmentation algorithms, statistical analysis, size and 
characteristics of the sample, etc (Herron et al. 2015). The 
present study is single center with an identical protocol for 
image acquisition, image segmentation, and postprocess-
ing. Thus, our results are relatively impervious to lack of 
consistent findings due to differences in the magnetic field 
strength of the MRI scanner, or differences in the quantifi-
cation methods of segmentation. Furthermore, the potential 
problems of age-related changes in subcortical volume are 
reduced by addressing a large sample of elderly subjects in 
their seventies and eighties.

The correlation matrix � of the 14 structures automati-
cally segmented is shown in Fig. 3. The correlation coef-
ficient of the same structure across the two hemispheres 
(adjacent cells of the main diagonal) is larger than between 
any two other structures. The two smallest structures, the 

amygdala, and the nucleus accumbens are also the two struc-
tures with the weaker correlation coefficient .68 and .66, 
respectively, while the rest of the structures are above 0.8. 
The accumbens happens to be also the structure that shows 
on average the least statistical dependence with the rest of 
the structures (the last two rows in Fig. 3). The hippocampus 
and the amygdala are the two structures with the strongest 
correlation; this holds true for the three correlation matri-
ces; the maximum value, excluding the principal diagonal, 
is always for the amygdala, hippocampus pair. Regarding the 
correlation matrix of interhemispheric structures, the rank-
ing of bilateral correlation in decreasing order is as follows: 
Caudate, Putamen, Thalamus, Hippocampus, Pallidum, 
Amygdala, and Accumbens. Always the strongest correlation 
is for the bilateral structures ( 𝜌(xL, xR) > 𝜌(xL, yR),∀y ≠ x ), 
that is, the statistical dependence between the same left and 
the right structure (x) is larger than for any two different 
structures (x, y).

Admittedly, the three 7 × 7 submatrices shown in Table 2 
do not contain any additional information, that is, not 
already included in the 14 × 14 correlation matrix � shown 
in Fig. 3. The rationale of selecting structures across and 
within hemispheres is to acquire both intrahemispheric and 
interhemispheric views of the brain. By isolating the study 
of statistical dependence in a single hemisphere versus the 
entire span, we can establish whether the volume variation of 
the different subcortical structures is better explained locally 
(i.e., spatial proximity structure in the same hemisphere) or 
globally (i.e., connection across hemispheres).

We are, thus, interested in acquiring a systemic view of 
the statistical dependency among subcortical structures. 
To that end, we need to understand how their volumes are 
related according to their hemispheric location. As shown 
in Table 2, it is possible to extract the correlation matrices 
for each hemisphere and the bilateral case. However, a cor-
relation matrix is a list of correlation coefficients, when what 
we need is an aggregate of the overall correlation for each 
matrix. As discussed in the Methodology section, we cannot 
compute the average of the correlation matrix because cor-
relation coefficients are not additive. However, an approxi-
mation of the overall strength of a correlation matrix can 
be calculated by computing the Fisher’s z-transformation 
of coefficient r in the correlation matrix, averaging the total 
to finally compute the inverse transformation (Eq. 3). The 
result of applying the Fisher’s z-transformation to obtain the 
overall correlation in the bilateral, left hemisphere, and right 
hemisphere correlation matrices is shown in Fig. 4.

We finalize our investigation of the intrahemispheric ver-
sus interhemispheric statistical dependence of subcortical 
brain structures with principal component analysis (PCA) 
of the three correlation matrices �L,�B , and �B (Table 2). 
The eigenvectors and eigenvalues of the data covariance 
matrix allow us to find the principal components in order 

Fig. 3  Correlation matrix of the seven bilateral subcortical struc-
tures segmented with FreeSurfer. The elements of the diagonal are 
naturally 1, the correlation matrix seems to indicate that the strongest 
statistical dependence is for the inter hemispheric correlation of the 
same structure
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of significance. Thus, the first eigenvalue is the variance 
of the first principal component, the second of the second 
component and so on.

The distribution of the eigenvalues calculated for each 
correlation matrix are shown in Fig. 5. Next, to assess the 
degree of independence of the structures volume, intra- and 
interhemispheric, we compute the area defined under the 
curve defined by the cumulative eigenvectors shown in 
Fig. 5. The area under the curve described by the cumulative 
eigenvalues is computed using the trapezoidal integration 
rule, i.e., dividing the total area into many trapezoids that 
yield the approximated area.

The area defined for the eigenvalues in the bilateral 
matrix is slightly larger for the interhemispheric correla-
tion matrix, B = 0.7143, L = 0.6795R = 0.6794 . Thus, the 
area of the left and right hemispheres renders almost identi-
cal results, while the cumulative eigenvalues relative area 
for the bilateral correlation matrix is only 5% larger. The 
amount of information both unilaterally and bilaterally is, 
therefore, similar. Note that if the data were independent, 

Fig. 4  Aggregate statistical dependence for interhemispheric and 
intrahemispheric subcortical volume estimates computed with the Z 
inverse transformation (Eq. 3). The statistical dependence is remark-
ably similar in all three cases. Of note, the main diagonal has been 
excluded from the computation of the Z transformation to avoid bias 
towards the interhemispheric matrices which are symmetric, while 
the bilateral correlation matrix is not symmetric

Fig. 5  The eigenvalues explain the variance of the data along the 
eigenvectors (principal components). The figure shows the explained 
variance of each of the correlation matrices by depicting the cumula-
tive eigenvalue (y-axis) versus the order of eigenvalues (x-axis). The 
explained variance can be calculated from the eigenvalues and tells 

us how much information (variance) can be attributed to each of the 
principal components. From the figure, we can deduce that the sub-
cortical structures have the same statistical dependence when studied 
intrahemispherically (a, b) and comparable with the interhemispheri-
cal eigenvalue analysis (c)
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then the cumulative curve would have an area of .5 as shown 
in the discontinuous red line in Fig. 5. The important point 
to be retained is that the volumetric estimates of subcortical 
structures when taken either bilaterally or unilaterally show 
similar statistical dependence.

Discussion and conclusions

Imaging studies in the order of thousands of MRIs per-
formed in the same center and using identical protocol 
and equipment are very costly. While it is possible to build 
aggregates of large datasets combining images from differ-
ent imaging centers, issues related to the consistency of the 
results need to be carefully addressed.

We leverage a large single-center dataset of segmented 
subcortical structures to foster our understanding of the 
anatomic symmetric organization of the brain. Over 3000 
MRI scans obtained in the same center and using identical 
procedure were segmented to extract the volume of seven 
subcortical structures in the limbic system and the basal 
ganglia, namely thalamus, putamen, hippocampus, caudate, 
pallidum, amygdala, and accumbens. While several studies 
that compare variations in volume and alterations of sym-
metry in relation to the sexes, handedness (Ocklenburg and 
Gunturkun 2012; Kang et al. 2015; Guadalupe et al. 2017), 
language (Corballis 2009), or even as potential markers in 
brain disorders such as schizophrenia (Roalf et al. 2015) 
exist, the study of the systemic volumetric interdependencies 
of subcortical structures has not received sufficient attention.

There are a large number of studies of sex differences in 
subcortical structures as well as studies that investigate the 
effect of Apolipoprotein E � 4 (Fleisher et al. 2005; Tang 
et al. 2015) handedness (Szabó et al. 2003) and other fac-
tors on the volume of brain structures (See Supplemental 
Results and references therein for an analysis of the effect 
of sex and age in subcortical volumetric estimates). We find 
no detectable effect on subcortical asymmetries when the 
sample is separated based on the allele �4 . Statistical tests 
found handedness-related asymmetries in the thalamus and 
hippocampus with no effect in accumbens and putamen. A 
recent meta-analysis (Guadalupe et al. 2017) did not find a 
significant effect of handedness on subcortical asymmetries; 
however, the same study found that asymmetry of certain 
structures, e.g., the putamen, varies with age. Finally, sex 
has a strong effect on the subcortical volumetric asymmetry 
in all structures except for the accumbens. This is in agree-
ment with Bayesian hypothesis testing performed on 5216 
participants in the UK Biobank (Ritchie et al. 2018) where 
no difference was found for the bilateral nucleus accumbens, 
finding, on the other hand, evidence for the hypothesis of 
difference for all other regions.

Sex differences in brain structures are thought to reflect 
biological and environmental influences which impinge upon 
brain development throughout the lifespan. Dimorphism or 
the condition by which the two sexes exhibit different char-
acteristics beyond the differences in their sexual organs has 
been reported in the human brain. Sexual dimorphism has 
been found in brain tissue composition (Allen et al. 2003), 
cortical thickness, (Goldstein et al. 2001; Chiarello et al. 
2009), and in subcortical structures morphometry (Lotze 
et al. 2019). Additionally, sex-related differences are found 
in brain activation and connectivity patterns (Ingalhalikar 
et al. 2014). A recent cross-sectional MRI study examin-
ing brain maturation (Duerden et al. 2020), found sex-based 
differences in cortical thickness and surface area meas-
ures, particularly in frontoparietal regions, whilst subcor-
tical structures presented only minor differences between 
males and females. These findings overall seem to suggest 
that subcortical surface area expansion could be associated 
with age-related maturation changes and linked to dendritic 
and synaptic architecture alterations underlying the brain 
changes during different stages of life.

A better understanding of sexual diphormism in the brain 
will require a whole-brain framework that can accommodate 
factors such as sex-based genetic expression (Kang et al. 
2011), sex differences in the endocrine system, in particular, 
steroid hormones (Giedd et al. 2012) together with appro-
priate models that incorporate, for example, factors related 
with child care and maternal health. The influence of sex on 
brain asymmetry and lateralization has been studied from 
the temporal perspective provided by developmental and 
maturational processes in the brain. While neuroanatomic 
data have shown sex-related differences in infancy and child-
hood (Caviness Jr et al. 1996; Knickmeyer et al. 2008) which 
remain relatively stable during the adult years (Goldstein 
et al. 2001), we lack a clear understanding of sexual dimor-
phism in the aging brain (Király et al. 2016). An intriguing 
hypothesis is the reversal of cerebral sexual dimorphism in 
mental disorders such as schizophrenic psychosis (Men-
drek 2007). For example, in Egloff et al. (2018), researchers 
found reversed sexual dimorphism only in the hippocampus, 
with the rest of subcortical volumes unaffected.

The symmetric pattern of subcortical volumetric 
changes found in this study could suggest age and sex 
interactions at play in the rebalancing of developmental 
and sex-related differences in subcortical areas across the 
lifespan. The present study is, thus, interested in the char-
acterization of the interdependency of subcortical struc-
tures in healthy, elderly brains. We propose a methodology 
based on Eigenvalue analysis to estimate the aggregate 
correlation of volumetric subcortical structures when they 
are studied in either the same hemisphere and in different 
hemispheres. While there is abundant literature in cor-
tical and subcortical structural variation associated with 
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biological (Eyler et al. 2011; Nickl-Jockschat et al. 2012; 
Wen et al. 2016; Bas-Hoogendam et al. 2018) and socioec-
onomic factors (Jenkins et al. 2020), the effect of aging on 
both the intrahemispheric and the interhemispheric sym-
metry of subcortical structures is inadequately understood.

To our knowledge, this is the largest single-center study 
of subcortical global symmetry. We find that the seven 
structures studied have similar coupling when their vol-
umes are studied either interhemispherically or intrahemi-
spherically. The correlation matrix of all the structures 
segmented show that the statistical dependence for any 
given structure is always the largest with its twin struc-
ture in the other hemisphere. Along these lines, we could 
say that development is more important than hemispheric 
proximity.

Interhemispheric integration is inevitable for how the 
brain develops and grows (Gazzaniga 2000). Both hemi-
spheric specialization and hemispheric integration are to 
be expected and are found in our results. By decomposing 
the correlation matrix into three submatrices containing the 
pairwise correlations both within the same hemisphere and 
in different hemispheres, we set apart three different views—
left hemisphere, right hemisphere, and interhemispheric—of 
the statistical dependency between subcortical structures in 
the brain.

The aggregate statistical dependence for interhemispheric 
and intrahemispheric subcortical volume estimates are com-
puted using two methods. First, directly from the correla-
tion matrix via the Z inverse transformation (Eq. 3) and last, 
using Eigenvalue analysis to compute the cumulative curve 
of the distribution of the eigenvalues that would indicate 
the independence of the variables within each matrix. In 
either case, the statistical dependence is remarkably similar, 
indicating that the subcortical structures studied here have 
comparable coupling when taken as a whole for each hemi-
sphere and when taken in different hemispheres.

The study overall indicates that anatomic bilateral sym-
metry is preserved in the aging human brain, supporting 
recent findings that postulate increased communication 
between distant brain areas as a mechanism to compensate 
for the deleterious effects of aging (Davis et al. 2017). The 
characterization of brain subcortical symmetry proposed 
here allows new views of interhemispheric and intrahemi-
spheric volume variation, setting the basis for future studies 
of anatomical symmetry and asymmetry in healthy brain 
aging.
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