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Abstract. The Escherichia coli is a bacterium that comfortingly lives in the hu-
man gut and one of the best known living organisms. The sensitivity of this cell
to environmental changes is reflected in two kind of movements that can be ob-
served in a swimming bacterium: “run” towards an attractant, for example food,
and “tumbling”, in which a new direction is chosen randomly for the next “run”.

This simple bimodal behavior of the E. coli constitutes in itself a paradigm of
adaptation in which roboticists and cognitive psychologists have found inspira-
tion. We present a new approach to synaptic plasticity in the nervous system by
scrutinizing Escherichia coli’s motility and the signaling pathways that mediate
its adaptive behavior. The formidable knowledge achieved in the last decade on
bacterial chemotaxis, serve as the basis for a theory of a simple form of learning
called habituation, that is applicable to biological and other systems. In this paper
we try to establish a new framework that helps to explain what signals mean to
the organisms, how these signals are integrated in patterns of behavior, and how
they are sustained by an internal model of the world. The concepts of adaptation,
synaptic plasticity and learning will be revisited within a new perspective, provid-
ing a quantitative basis for the understanding of how brains cope with a changing
environment.

Keywords: chemotaxis, integral control, internal model principle, Escherichia
coli, homeostatic synaptic plasticity, habituation learning, perfect adaptation.

1 Introduction

We are living times of dramatic technological improvements. High throughput tech-
niques have produced an extraordinary data abundance that is now being complemented
with new in vivo techniques.

Construction of complex cellular models, including detailed descriptions at molec-
ular scale, is an ongoing process moving at a strong pace. The challenge is however,
not merely technological, but conceptual [26]. The behavior of a biological system can
be studied at multiple levels, in deciding the level of detail that each component is de-
scribed, we are making a strong commitment that should not be neglected.

The question we are addressing here is, How much knowledge of itself the E. coli
or a neuron for that matter, needs in order to adapt to a changing environment? This
epistemic problem is tackled twofold. First, we need to explore what is the capability
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of the E. coli of making new models of itself and the medium in which it moves; and
second, how can we extrapolate the understanding on the organizational principles of
the E. coli to the central nervous system of a mammal.

It must be said that by “knowledge of itself” we do not intend to tangle ourselves
with speculative discussions about the introspective capacity of a single cell, rather
our approach is in line with Fiorillo’s neurocentric view, in which the information a
neuron has about its world, may be quantified through biophysical parameters such as
membrane potential [9], [10].

The paper is structured as follows. Section 2 emphasizes the necessity of realistic
models grounded on empirical basis. Section 3 provides a basic understanding of E.
coli adaptability at a molecular level. Behavioral aspects of the bacterium, and under-
lying mechanisms, such as homeostasis are sketched. Section 4 investigates adaptation
in the E. coli within a quantitative framework, based on the computation of key prop-
erties like perfect adaptation. Furthermore, we introduce the idea that organisms are
representational devices that subserve internal representations of the world [22].

The last part of the paper is devoted to expand concepts such as adaptation or in-
ternal model[15], to a more complex domain than bacterial chemotaxis i.e. nerve cells.
Section 5 addresses, in a non speculative way, how much knowledge of itself has a bi-
ological system, by providing working definitions of knowledge as an internal model.
In section 6 we borrow tools from Control Engineering. The Internal Model Principle,
and in particular Integral Control, gives a mathematical basis for the study of E. coli
adaptation, broading this result to synaptic plasticity in section 7. We conclude with
conclusions and future works in 8.

2 Towards a New Approach in Modeling Adaptation

It is important to note that technical and biological systems differ in a fundamental way,
while the former are built for a specific purpose the last is the product of thousand of
years of evolution. The engineer is not (or should not be) a tinkerer [13], therefore tech-
nical systems, contrary to biological ones, are predominately linear, and this is because
the mathematical tools accessible to the engineer are essentially linear. Furthermore, bi-
ological control systems may lack typical features present in engineering systems, such
as the reference input, the error detector or the single input-single output architecture
that makes amenable linear techniques like Laplace transforms [18].

E. coli is one of the simplest living things, and yet a complex system in the sense
given by Trimmer in [24], where simple systems are formulated by a linear equation of
second order or less, with constant coefficients. Those systems that do not meet these
constraints are complex systems.

It is possible to model the movement of the E. coli as a control mechanism which
drives the bacterium to one of the two possible set points or equilibria i.e. run and
tumble. This approach subscribes a view of E. coli behavior as passively responding
to a series of stimuli introduced in ideal laboratory conditions. The problem with this
modeling strategy is that it does not inform us about the lengths of the run movements
or the frequency of the tumblings.

A more realistic description of the bacterium should provide an analysis of the tran-
sients between the aforementioned run and tumble set points shown in figure 2. We need
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Fig. 1. E. coli microphotograph.
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Fig. 2. The E. coli motility modeled as a system that alternates in its two possible states, run mode
and tumble in the vertical axis, along time in the horizontal axis.

models able to explain how the extracellular signals are bounded to specific receptors
in the cell’s membrane and afterwards computed in the cellular milieu. The metabolic
well-being of the cell, that is, its internal state, needs to be incorporated into our model.

In summary, we can say that in order to understand how the E. coli’s adaptation
works, we need to acknowledge how the bacterium extracts information of the world,
to encode it as signals that organize the system in a particular internal state.

3 E. coli Chemotaxis

In this section, we give a succinct description of the sensory and signaling machinery
that direct the E. coli motion, for a more detailed account see [3], [21]. It may be wor-
thy to start with a terminological remark. Molecular biologists use the term pathway,
like in signaling pathway, as an abstraction to refer to a sequence of events involved in
a specific process inside the cell, carried out by a network of molecules, mostly pro-
teins, whose topology and dynamics have been explicitly described. Thus the E. coli
chemosensory pathway is the basis of bacterial chemotaxis.

Pathways, in reality, are systems with complex network dynamics. Thus, the term
pathway may be puzzling for the non specialist, because it entails a rather deterministic
and linear vision, which is in direct opposition with the stochastic and non-linear nature
of biochemical networks. Keeping this caveat in mind, we introduce the chemotaxis
pathway which is one of the best well-known signaling pathways.
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Bacterial chemotaxis is the movement towards or away from regions with concen-
trations of chemicals. For example, the bacterium E. coli swims toward substances such
as amino acids (serine and aspartic acid), sugars (maltose, ribose, galactose, glucose),
and away from potentially noxious chemicals, such as alcohols and fatty acids [4]. The
chemotactic ability of the E. coli relies in its capacity to sense the rate of change of
concentration of certain chemicals in its vicinity.

It is interesting to note that chemotaxis is an universal property of bacteria motility,
which does not provide any evolutionary advantage per se, unless the movement is bi-
ased to produce a physiological response that is suited to a particular environment [27].
In order to acquire a real understanding of how the bacterium responds to a changing
environment, we must capitalize the abundant empirical knowledge at single-cell level
and, if possible, build predictive mathematical models grounded on quantitative data.
The E. coli responds to the environment by a composition of two kinds of movements,
running towards an attractant, and tumbling, in which a new direction is chosen ran-
domly for the next running mode. In homogeneous environments, tumble events occur
every second, so the E. coli moves randomly, while in environments with a non ho-
mogeneous concentration of chemicals, the frequency of tumbling is a function of the
sensed gradients of attractants and repellents. There are two key mechanisms that un-
derlie the movement of the bacterium; on the one hand, the binding ligand-receptor,
and on the other hand, the homeostatic process by which the phosphorization of CheA1

protein goes back to the pre-stimulus level. Let us see this in detail.

3.1 The Binding Ligand-Receptor

E. coli has five chemoreceptors, four of them are methyl-accepting proteins2 (MCP) and
the fifth is MCP-like protein. The receptors, in order to be effective, need to connect the
cell with the environment, so the receptors are located through the membrane, having a
periplasmatic section exposed to the environment, a thin section in the membrane, and
a long tail immersed in the cytoplasm of the cell.

Ligands e.g: maltose, bind to the periplasmatic site, that is, the part of the receptor
that is outside the cell. It might be said that the binding is not always 1:1 i.e. one kind
of ligand to one kind of receptor, for example in the E. coli, one MCP (MCP Tar) can
bind to two distinct ligands.

MCP receptors do not act in isolation but they form clusters. The clustering depends
on the cytoplasmic proteins CheA and CheB. The clustering of MCP seems to play an
important role in one of the most remarkable characteristics of the chemotaxis path-
way, its high sensitivity: chemoreceptors are able to detect a change in a few molecules
in simultaneity with a background concentration in the environment varying abruptly
[23]. The binding of a ligand by a MCP cluster may affect other neighboring unbound
receptors, thus the binding recognition process ligand-receptor, can not be understood
as an isolated system with two matching parts, the ligand and the receptor [6].

1 Che stands for chemotaxis.
2 A methyl groups is a −CH3 group.
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The number of methyl groups (−CH3) in the receptor cluster (Figure 3), informs the
cell about the perturbations, that is to say, the number of methyl groups is a measure of
the rate of change of attractants or repellents outside the bacterium. Methylation acts
as a compensator of the external signals entering to the cell. Dennis Bray [5] suggests
that the methyl groups works as a memory that allows to trace the recent conditions of
the environment in terms of attracting or repulsive substances. The more attractants are
sensed the more likely is to have methyl groups carried by the receptor in the cell cy-
toplasm. There are 8 slots in the receptor for methyl groups, the number increases with
the attractant concentration, so 0 methyl groups may indicate a response to a repellent.

3.2 Homeostasis in the E. coli

The other interesting phenomenon in bacterium motility is homeostasis by which the
rate of phosphorilation in CheA, returns to the pre-stimulus state. As CheB is also phos-
phorylated by CheA-P, an increase in demethylation of the MCPs is produced, reduc-
ing CheA auto-phosphorization (even for low concentration of attractants). As a conse-
quence, the rate of auto-phosphorization, together with the rate of direction changing in
the motor flagella also decreases, returns to pre-stimulus level (Figure 3).

3.3 The Tumbling Mode

The tumbling mode is triggered by a decrease in the concentration of attractants, which
produces a reduction in attractant binding to the MCPs, that in turn, elicits an increase
in the auto-phosphorization rate of CheA protein, now called CheA-P. The phosphates
are then transferred to the CheY protein, which regulates the way in which the bacterial
motors turn. The phosphorylated form of CheY, CheY-P, binds to the flagellar motor,
switching the rotation motor to clockwise so as to cause the bacterium to tumble.

3.4 The Running Mode

The run mode is symmetric to the tumble mode. As the concentration of attractants
increase, the CheA auto-phosphorization is inhibited, which reduces the concentration
of CheY-P, as a result, the frequency of motor switching is reduced. The bacterium
swims towards a favorable region in the direction of a positive gradient, by rotating
counterclockwise all the motor flagella.

In synthesis, the strategy followed by the E. coli may be easily stated as “if things are
getting better do not change what you are doing, else change direction”. It is interesting
to note that E. coli’s behavior is fundamentally stochastic. The rationale for this must
be found in the frequency of the tumbles i.e. the probability of a tumble decreases with
the presence of chemoattractants, thus the bacterium moves in a favorable direction.
When the environment is homogeneous, no privilege movement direction is observed
in the E. coli since no beneficial nor detrimental chemical exists in the vicinity of the
cell. Thus E. coli’s tumbling is produced by frequent aleatory changes in the direction
of movement.
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Fig. 3. Model system of E. coli chemotaxis. The figure shows two methyl-accepting proteins
(MCP), one of which is interacting with one periplasmic binding protein (PBP), phosphoryl
groups P, methyl groups M (−CH3) and chemotaxis proteins CheA, CheB, CheR, CheW, CheY
and CheZ. The receptor (dashed box) which is the system modeled in [2], is a protein complex
composed of MCP, CheA and CheW. The kinetics inside the receptor is modeled by a set of
coupled differential equations. The input is the ligand concentration and the output is the activ-
ity in the receptor, which is finally translated into bacterial movement through changes in the
tumbling frequency in the flagellar rotor. A decrease in attractant concentration induces trans-
autophosphorylation of CheA, which phosphorylates CheY, CheY-P, to bind to the flagellar mo-
tor to bring about a change in direction. Phosphorylated CheA also phosphorylates CheB which
competes with CheR to control the number of methyl groups in the MCPs. As concentration
of attractants increase, the CheA auto-phosphorization is inhibited, which together with phos-
phatase CheZ, reduce the concentration of CheY-P, as a result, the frequency of motor switching is
reduced.
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4 Adaptation in E. coli

Adaptation means different things depending on the context. For an ecologist, adap-
tation means the possession of forms and functions that help to explain how well an
organism does what it does in a changing environment. In this paper, we are interested
on a study of adaptation that does not rely on survival as the sole criteria of fitness.
We need to provide a quantitative criteria of fitness, different to the anthropomorphic
vision that assumes the idea of the system as a prosecutor of an “optimal fit” which has
been established a priori by an external observer. Note the ressemblance with Expected
Utility Theory in economics [20].

Definition 1. Adaptation is the adjustment of a set of parameter values that permits
continuing stability in the face of environmental changes.

Adaptation in the E. coli is understood in relation to adaptation of a stimulus e.g. a
chemoattractant, where methylation works as a force that compensates for the change
in the tumbling frequency induced by the stimulus.

The addition of attractants causes a transient decrease in the activity of the cell,
as a consequence, the methylation of receptors increase to compensate this activity
reduction. It might be noted that methylation is a reversible process, therefore a removal
of attractants will cause an increase in system activity, and consequently methylation
will compensate for this effect.

Alon et al. [1] and Barkai and Leibler [2] have developed a quantified theory of bac-
terial adaptation based on the computation of a set of key parameters i.e. steady state
tumbling frequency, perfect adaptation degree and adaptation time. When the mem-
brane receptor is perturbed by an external ligand, methylation is triggered to retrieve
the previous receptor activity value. This capacity of the system to compensate for ex-
ternal stimulation, in order to be ready for the next stimulus is adaptation at work.

Formally, the chemotactic behavior of the bacterium is adaptive when the output is
equal to the pre stimulus state:

A(δ ) = Ast

where A(δ ) is the activity function of the stimulus δ , and Ast is the steady state activity.
For example, in a model of the E. coli chemotaxis, the output is the tumbling frequency
and the input is the concentration of the ligand. We say that the bacterium has adapted in
the face of a perturbation or external input, when the tumbling frequency returns to the
pre stimulus value. Hence, A(δ ) = Ast , because the activity function A is independent
of the external input δ .

4.1 Perfect Adaptation

By sensing and processing certain chemicals in the environment, the E. coli changes
direction and position. This seemingly intentional movement is in reality a process of
adaptation, that strives to maintain certain physiological conditions within acceptable
limits. Hence, bacterium’s adaptation pertains mainly to the homeostatic mechanisms
by which the effect of the stimulus is gradually not taken into account despite is pres-
ence. The adaptation or homeostatic property in the E. coli refers to the adjustment of
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an output (tumbling frequency) to an external stimulus (the ligand, an attractant or a
repellent).

Adaptation can be measured by its precision, which is ideally 1 (perfect adaptation).

precision =
unstimulated tumbling frequency

stimulated tumbling frequency

Hence, perfect adaptation is a precise return to the activity level existing before the
stimulus.

Terminology again may be confusing. For biologists, perfect adaptation occurs
when the value of the steady state activity is independent of the ligand concentra-
tion. In dynamical systems theory, for a given linear system with a state vector state
q = (q1,q1, . . . ,qn), an external stimulus u and output y, the equations of its dynamics
are given by:

dq1

dt
= A11q1 + . . .+A1nqn + b1u

. = ..
dqn

dt
= An1q1 + . . .+Annqn + bnu

This system has perfect adaptation when y is independent of the external stimulus u at
steady state:

y = c1q1 + . . .+ cnqn

4.2 Internal Models of the E. coli

Two sorts of mathematical models have been produced to model the adaptation property
in the E. coli: models based on fine-tuning of parameters[16], and models of adaptation
as an intrinsic property of the network[1]. While these two kinds models differ in the
approach; both share a very fundamental characteristic, the internal structure of the
system i.e. network of protein complexes, is precisely known.

However, the mere assumption of a wise parametric adjusting does not guarantee
that the prediction of future states of the system is attained. This is mainly because in
an unpredictable environment, the structure is not always valid; as a matter of fact, it
may be drastically modified by the environment. This limitation in biological systems
modeling becomes conspicuous with the use of metaphors.

For example, the key-and-lock metaphor still prevails to explain the selective binding
between an extracellular molecule i.e. ligand, and the receptor site in a cell’s mem-
brane which targets the ligand specifically. Biologists call to this matching binding
recognition.

We must acknowledge that these are toy models that make assumptions that are not
completely realistic. If we want to build models as realistic as possible, we should
account for the individual “character” of genetically identical cells. Furthermore, non
linear characteristics, such as the crosstalk between receptors or the interaction between
chemotactic and other signal systems, would introduce undesirable effects related to
non computability.
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But it is indeed possible and advisable to understand how the E. coli behaves and
adapts, without being in possession of a complete description of the organism. This
may be achieved by investigating which are the organizational principles that our model
implements.

For it to be an engineering biology (or synthetic biology as vogue dictates today),
it is necessary to be able to study the environment as signals that are mapped onto the
organism’s receptors, configuring a network where information is efficiently integrated
and transmitted.

It is extremely important to emphasize that the E. coli is a representational device
that subserves the formation of internal representation of the world through networks of
proteins, notably CheA which informs the concentration of attractants in the neighbor-
ing of the cell, and CheP, which instructs the movement of the cell. Thus, the study of
E. coli chemotaxis provides a solid step in this direction, because it is possible to map
the concentration of attractants outside the cell onto the concentration of key signaling
molecules such as CheA, CheP or CheY inside the cell.

5 How Much Knowledge of Itself Has a Biological System?

Before in this paper, in section 4.2, we addressed the important issue of how much
knowledge of itself possesses the E. coli. According to Bray, [5], the internal represen-
tation of the bacterium is encoded in its networks of proteins.

Since our ultimate concern is to set the basis for a general theory of adaptation and
learning, it is pertient to provide some working definitions of key concepts, such as
knowledge and internal representation. Following Dudai in [8]:

Definition 2. Knowledge is structured bodies of information that the organism has
about the world, and capable of setting the organism’s reactions to the world.

It is important to precise that in this definition, world is both the environment and the
internal state of the organism.

Definition 3. Internal representation is a version of the world encoded in biological
basis, typically a neural system. Internal representations are constituent of knowledge,
they influence in the organism’s behavior, and therefore are able to change the world.

At least at conceptual level, it is easy to draw similarities in the way the E. coli and
nerve cells adapt and process information. Both systems have internal models of their
surrounding, built from networks of protein molecules. What is still to be shown is the
precise way in which that connection can be materialized in a common framework. This
will be discussed in section 6.

In order to understand the representational properties of neurons we need to unravel
how they transduce, compute and transmit information. Neurons receive information
from other neurons and/or the environment, integrate this information, and transmit it
to other neurons or effector cells, for example in a muscle. Neurons signal to each other
through specialized junctions called synapses.

Two kind of signals cohabit in neuronal information processing, electrical signals
and chemical signals. Electrical signals are measured by the membrane potential pro-
duced by ionic currents across the membrane. The neuron’s membrane receptors are
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gated ion channels. Based on the gating mechanisms, ion channels can be classified in
voltage-gated or chemically-gated channels.

Local potential is a graded electrical signal that propagates passively in an attenuated
way. Depending on its neuronal input, local potentials are called receptor potential or
synaptic potential. The former is a local potential generated in sensory neurons and the
last is generated in synapses. Local potentials are integrated by the cell, and when the
summation depolarizes the neuron’s membrane over a threshold, an action potential is
elicited. Contrary to local potential, action potential is all-or-none signal, transmitted
in a unattenuated way and maintained by voltage gated channels. The terms neural fire
and neural spike mean both that the neuron generated an action potential.

An action potential conveys information as follows: it enters into a presynaptic ter-
minal of a chemical synapse generating a release of neurotransmitters, which invade the
synaptic cleft and bind to specific receptors in the postsynaptic terminal, which elicit
a synaptic potential that eventually may trigger an action potential. Thus, a chemical
synapse can be seen as a signal transduction system from chemical to electrical signals.

6 The Internal Model Principle

The aforementioned work of Barkai et al. [2] and Alon et al.[1], stated the robustness of
perfect adaptation in bacterial chemotaxis. Yi et al.[28] generalized that result demon-
strating that Barakai and Alon’s model is a particular case of integral feedback control.

Integral control (IC) is used ubiquitously in engineering systems, ranging from sim-
ple thermostats, to the control of speed, altitude and heading in sophisticated airplanes.
IC is a particular case of the Internal Model Principle (IMP) proposed by Francis and
Wonham in 1976 [11]. IMP establishes that for asymptotic tracking of a signal, the con-
troller must contain a model of that signal. This model of the exogenous input is called
an internal model.

The E. coli adaptation is properly understood under the Internal Model Principle.
Figure 4 shows a feedback loop that successfully implements a zero tracking error for
a constant input. The integral control action is in the integral of the error that is feed
back into the system. The input stimulus u is the concentration of chemoattractant, the
output y is the concentration of active receptor complex. The reference signal y0 is
the pre-stimulus concentration of active receptor complex. The error is given by the
difference between the actual output y1 and the reference value, e = y1 − y0.

At steady state we have e = 0 for all input u. Thus, at steady state the E. coli activity
i.e. tumbling frequency, is independent of the input i.e. ligand concentration. Therefore,
the perfect adaptation is achieved when we have a zero tracking error in integral control
action, that is to say, the output is independent of the input level in steady state. Feed-
back control theory is pertinent in the biological context if we acknowledge that “the
physiology of biological systems can be reduced almost entirely to their homeostasis
[12]”. Homeostasis, the maintenance of constant physiological conditions, can not be
fully understood without control system theory. The constancy of the internal state is
achieved by negative feedback, and the internal state of the system is a representation
of the world at a particular instant.
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Fig. 4. At steady state ẋ = e = 0 for all input u. In the E. coli case this means that the tumbling
frequency of the bacterium is independent of the sensed attractants in its surroundings. In habitu-
ation learning in sensory neurons, the membrane potential is independent of the concentration of
glutamate. For the E coli, the control signal u is the concentration of attractants in the bacterium’s
surrounding, y1 is the tumbling frequency, y0 is the tumbling frequency previous pre-stimulus
and e is the difference between the actual tumbling frequency and the desired one. In habituation
learning, u is concentration of glutamate in the synaptic cleft prompted to be binded in the mem-
brane’s receptors, y1 is the membrane potential Vm, y0 is the membrane potential pre-stimulus
and e is the difference between the actual membrane potential and the desired one, y0.

By no means should be this result undervalued or enclosed for the particular case
of the E. coli. Integral control is both a necessary and sufficient condition for robust
tracking of a specific steady-state value. One of the rationale of this paper is to bring this
important result into physiological systems more complex than bacteria. In particular,
we use it for modeling habituation learning in the nervous system.

7 Habituation Learning

Thanks to Kandel’s work in the Aplysia, a mollusc with about 400 neurons, some of
them visible to the naked eye, it is possible to distinguish three kinds of learning in this
animal: habituation, sensitization and classical conditioning.



52 J. Gomez-Ramirez and R. Sanz

Habituation is the decrease in the behavioral response for a stimulus when the organ-
ism is exposed repeatedly to the same stimulus. At a cellular level, habituation leads to
a reduction in effectiveness of synaptic transmission by sensory neurons.

Sensitization is characterized by an increase in the response when the animal is ex-
posed to continual harmful stimulus, as a result, the animal learns to respond more
vigorously to the coming harmful and also harmless stimulations.

Put in behavioral terms, both habituation and sensitization are an enhancement of re-
flex responses. Habituation tends to an unique equilibrium state of non response, while
sensitization is a more complex behavior because it produces responses that do not con-
verge to an equilibrium point. We focus here on the most basic form of implicit learning
i.e. habituation.

In habituation learning, the organism learns to ignore a repetition of stimulus that
is harmless. The effectiveness of synaptic transmission by sensory neurons that per-
ceive the stimulus, is reduced by lowering the release of glutamate neurotransmitters.
Thus, habitation is caused by a reduction in the release of glutamate from presynaptic
neurons. It might be remarked that sensitivity of receptors in the postsynaptic terminal
is not modified with habituation [14], which relies on glutamate concentration at the
postsynaptic gates.

Figure 4 can be interpreted as the integral control scheme for habituation learning,
which is the simplest type of implicit learning. The stimulus u is given by the synaptic
input and the output is the membrane potential Vm. In the E. coli case, the internal
model of the external signal ligand is the chemoattractant concentration; while in the
neural case, the internal model is the concentration of glutamate that binds with specific
receptors, eliciting the depolarization of the cell. Thus, depolarization is a deviation
from the neuron’s resting membrane potential towards its threshold potential.

The membrane potential at steady state V st
m is independent of the input signal u (glu-

tamate concentration), this result can be obtained because the neuron has a replicated
model of the external signal, glutamate concentration. We say that the habituation learn-
ing capacity found in neurons is adaptive when

V st
m =Vm

7.1 Homeostatic Synaptic Plasticity

Although all living cells have a difference of voltage across the membrane, in nerve
cells, the membrane potential acts as an integrator of the neuronal input i.e. local poten-
tial. Synaptic potential depends on the release of neurotransmitters, for example gluta-
mate in sensory neurons.

Plasticity is an experience-dependent modification of neuronal properties such as
synaptic strength. It is widely believed that plasticity is at the core of learning and
memory. Learning is a word with many different interpretations as it conveys a complex
phenomenon that encompasses multiple of levels of analysis.

The neuron’s stimulus is given by glutamate molecules that bind the membrane’s
receptor depolarizing the neuron. The concentration of glutamate constitutes an internal
representation of the external stimulus. The output is the membrane potential generated
by the integration of information in the neuron. The view of the brain as a decision
making device is typically related with Helmholtz’s motto “the brain is an inferential
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machine”. In the beginnings of modern neurobiology, Sherrington perceived integration
as the quintessential action of nervous system, which values consequences of different
types of information to choose a proper response [19].

Homeostatic synaptic plasticity is a relatively young area of research that is dedicated
to unveil the mechanisms that allow neurons and assemblies of neurons, to maintain a
stable way of functioning in the face of perturbations and changes in synaptic strength
[7],[17].

As it may be expected, homeostatic synaptic plasticity is sustained by negative feed-
back action that compensate for activity-dependent changes in synaptic strength
through, for example, learning.

Habituation learning is indeed a form of homeostatic plasticity. For an extended re-
view on the typology homeostatic plasticity see [25]. It is important to point out that
given a change of synaptic properties, the identification of the plasticity mechanisms
that underlie such modification are not straightforward. In summary, we propose here
the internal model principle implemented in an integral control as the plasticity mech-
anism for the simplest form of implicit learning, habituation. A quantitative theory of
learning and memory is a long way goal (Figure 5). More complex forms of learning
such as explicit learning would require hierarchical structures of control that still need
to be elucidated. However, the formulation of a common theoretical basis for adaptation
in prokaryotic cells and plasticity in the neuronal system represents a solid milestone in
this direction.

E. coli perfect 
adaptation

Habituation learning Sensitization
classical 

conditioning
Explicit learning

Integral Control

Hierarchies of Integral Control Action

Fig. 5. Both E. coli and habituation learning can be modeled using Integral control. For more
complex types of memory, the Integral Model Principle does not directly apply, perturbations are
not necessarily constant control signals, though it is valid in the homeostasic mechanisms that
characterized E. coli adaptation and habituation learning in neurons.
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8 Discussion

Here we present, for the first time, an application of the Internal Model Principle used in
control engineering to habituation learning in neuronal systems. By focusing on the do-
main of bacterial chemotaxis, we intend to translate quantitative models that are relevant
in the domain of synaptic plasticity. We do this by capturing the general principles that
apply to both domains. Our approach -i.e. going small in order to escalate to more com-
plex domains through the formulation of general principles expressed in quantitative
terms- is similar to Sidney Brenner’s middle-out alternative to the customary rhetoric
of bottom-up versus top-down.

Integral feedback control has been postulated as the strategy by which bacterial
chemotaxis achieves robust adaptation, and in a more general way, underlies homeo-
static mechanisms [28]. The integral control is one of the simplest controllers defined
under the Internal Model Principle. We demonstrate that the IMP applies to habitua-
tion learning in neuronal systems. The membrane potential of a neuron integrates the
world’s stimuli received by the neuron through its ion channels. The knowledge that the
neuron has of itself is gathered in the membrane voltage.

The control strategy proposed here has as regulated variable, the error, expressed
as the neuron’s output (membrane potential) minus the reference input (pre stimulus
membrane potential), and as input the glutamate concentration. By feeding back into
the system the time integral of the error which contains an internal model of the external
stimuli, we are able to provide mathematical formulation of the homeostatic plasticity
that mediates in habituation.

We are cognizant that the complexity of the brain will require of more powerful
mathematical tools than those used here, to address other forms learning, like condi-
tional learning or explicit learning. Nevertheless, this approach provides a quantitative
framework that may open new and relevant insights for researchers in learning and
memory.

Both adaptation in the E. coli and learning in neuronal systems are studied here
as experience-dependent mechanisms of generation and modification of internal
representations. We expect that important concepts in either technological and natural
systems, such as adaptation or learning, which are used with multifarious connotations,
will benefit from the quantitative stance developed here.

What is needed now is to design the tools and fabricate the concepts that account for
the process of adaptation itself, that is, from the point of view of the organism.
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