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a b s t r a c t

The paper discusses how neural and mental processes correlate for developing cognitive abilities like
memory or spatial representation and allowing the emergence of higher cognitive processes up to
embodied cognition, consciousness and creativity. It is done via the presentation of MENS (for Memory
Evolutive Neural System), a mathematical methodology, based on category theory, which encompasses
the neural and mental systems and analyzes their dynamics in the process of ‘becoming’. Using the
categorical notion of a colimit, it describes the generation of mental objects through the iterative
binding of distributed synchronous assemblies of neurons, and presents a new rationale of spatial
representation in the hippocampus (G!omez-Ramirez and Sanz, 2011). An important result is that the
degeneracy of the neural code (Edelman, 1989) is the property allowing for the formation of mental
objects and cognitive processes of increasing complexity order, with multiple neuronal realizabilities;
it is essential “to explain certain empirical phenomena like productivity and systematicity of thought
and thinking (Aydede 2010)”. Rather than restricting the discourse to linguistics or philosophy of
mind, the formal methods used in MENS lead to precise notions of Compositionality, Productivity and
Systematicity, which overcome the dichotomic debate of classicism vs. connectionism and their
multiple facets. It also allows developing the naturalized phenomenology approach asked for by
Varela (1996) which “seeks articulations by mutual constraints between phenomena present in
experience and the correlative field of phenomena established by the cognitive sciences”, while
avoiding their pitfalls.

© 2015 Published by Elsevier Ltd.

1. Introduction

Despite the huge progresses in brain research in the last 25
years, the brain's large-scale organizational principles allowing for
the emergence of cognitive abilities like perception, memory, or
spatial representation are far from clear. One question we must
address to make real progress in the brain/mind problem is: Canwe
hope to find common processes at the basis of cognition, leading to
a new cognitive neuroscience comparable in terms of parsimony
and explanatory power with for example, physics?

Mathematical models of brain dynamics have been developed,
most often based on non-linear differential equations (Freeman
and Vitiello, 2006), dynamical systems theory (Izhikevich, 2006),
complex network theory (Bullmore and Sporns, 2009), stochastic
variational methods (Friston, 2010) or information theory (Barlow,

1972). They tend to concern particular processes and cannot
simultaneously cover the micro, meso and macro levels.

However, despite the diverse nature of cognitive abilities like
memory, spatial representation or higher cognitive processes up to
consciousness and creativity, they all share the following common
properties.

(i) Synaptic plasticity (Hebb, 1949): a mental object activates a
neuronal assembly which operates synchronously and be-
comes reinforced by Hebb synaptic rule.

(ii) Degeneracy of the neural code (Edelman, 1989) a mental ob-
ject can activate different neuronal assemblies.

(iii) Structural Core consisting of a spatially and topologically
central sub-graph of the graph of neurons and synapses be-
tween them, with many strongly connected hubs (Hagmann
et al., 2008). The Structural Core plays “a central role in
integrating information across functionally segregated brain
regions” and “is linked to self-referential processing and
consciousness”.
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(iv) Multi-temporality modular self-organization of the neural
system, with modules of different sizes, working at different
rhythms.

Using categorical tools, these properties allow constructing a
‘dynamic model’ MENS (for Memory Evolutive Neural System) of a
neuro-cognitive-mental system of which we give an outline in this
article. MENS proposes a common frame to study neuronal and
mental processes up to the development of higher order cognitive
processes, at different levels of description and across different
timescales, with their temporal becoming, “to acknowledge the
openness of this becoming” (Kauffman and Gare, 2015).

MENSwas introduced by Ehresmann and Vanbremeersch (2001,
2007) to account for neuroscientists' results, for instance Edelman's
work in degeneracy; and it has also benefited from phenomenol-
ogy, in particular the works of Husserl, Brentano and Merleau-
Ponty. Crucially, some of the mathematical notions brought by
MENS were later ‘found’ to have a neurological correlate. For
instance: (i) cat-neurons (introduced in the nineties) have exactly
the properties that the neuroscientist Buzsaki gave (in 2010) to his
“reader neurons” and their hierarchy could describe his “neuronal
syntax”; (ii) the Archetypal Corewas introduced in (Ehresmann and
Vanbremeersch, 2001) for studying consciousness, and it is only in
2008 that its neuronal base (the structural core mentioned above)
has been discovered.

In MENS, the mental “supervenes” on the neural (through iter-
ated complexifications), so that it relates to the neuro-
phenomenology introduced by Varela (1996) while avoiding the
pitfalls indicated by Bayne (2004). In particular, the degeneracy
property avoids “isomorphism between neural and mental”
because it implies that a mental object has multiple neuronal
realizations.

The paper is structured as follows: Section 2 recalls the basic
notions of category theory and how they provide an approach to
the notion of mathematical structure and to universal properties.
Section 3 shows how the notions of direct and inverse limits (Kan,
1958), of (hierarchical) evolutive systems and the complexification
process (Ehresmann and Vanbremeersch, 1987) lead to the devel-
opment of a methodology for studying the evolution of multi-scale
self-organized systems. MENS is constructed in Section 4 by iter-
ated complexifications of the (evolutive system NEUR modeling)
the neural system; its local and global dynamics in their temporal
becoming are studied in Section 5. In Section 6, we stress the role of
the Archetypal Core at the root of both the emergence of higher
cognitive processes and of phenomenological experiences. Section
7 analyzes how the notions introduced deal with empirical phe-
nomena like compositionality, productivity and systematicity of
thought (Aydede, 2010) and how the MENS methodology relates to
philosophical problems such as the well-known confrontation
connectionism vs. classicism, or the development of a neuro-
phnomenology.

2. Category theory

Category theory is a domain of mathematics, introduced by
Eilenberg and Mac Lane in the forties (Eilenberg and MacLane,
1945) to relate algebraic and topological constructs. Category the-
ory has a unique status, at the border between mathematics, logic,
and meta-mathematics. Crucially, it resorts to relational mathe-
matics, since what is important in a category is not the “structure”
of its objects per se, but the relations between them. In the late
fifties, its foundational role in mathematics was made apparent, in
particular through the introduction of adjoint functors and (co)
limits by Kan (Kan, 1958), the theory of species of structures and of
local structures by Charles Ehresmann (Ehresmann, 1958), and the

notion of abelian categories as a basis for homology (Grothendieck,
1957). Later its role in logic was emphasized by several authors: for
example, in the theory of topos developed by Lawvere and Tierney
(Awodey et al., 2009), and in the sketch theory developed by
Ehresmann (Borceux, 2009). It makes a general concept of structure
possible, and indeed it has been described as mathematical struc-
turalism, providing a single setting unifying many domains of
mathematics.

Category theory tries to uncover and classify the main opera-
tions of the “working mathematician”; for instance defining a
general notion of sub-structure, of quotient structure, of product,…
valid as well for sets, groups, rings, topological spaces,… Mathe-
matical activity, here, reflects some of the main operations that
humans do for making sense of the world: distinguishing objects (a
tree, a fruit,…); formation, dissolution, comparison, and combina-
tion of relations between objects (the fruit is linked to the tree,
these fruits have the same color, one fruit is larger than another,…);
synthesis of complex objects from more elementary ones (binding
process) leading to the formation of hierarchies (complexification
process); optimization processes (universal problems); classifica-
tion of objects into invariance classes (formation of concepts). As all
these operations are at the root of our mental life, and also of sci-
ence, it quite naturally follows that category theory can be suc-
cessfully applied to different scientific domains (Spivak, 2014), in
particular computer science, in the foundations of physics for
studying quantum field theories, and in biology, see for example
the seminal work of Robert Rosen (Rosen 1958) and recent con-
tributions in the field of theoretical biology (Letelier et al., 2006),
(Gatherer and Galpin, 2013).

2.1. Graphs. The graph of neurons

Graphs have been used to represent networks of any nature:
cellular networks, social networks, the internet… Here we define a
graph G as a set G0 of objects A, B,…, called its vertices, and a set of
oriented edges (or arrows) between them; an edge f from A to B is
represented by an arrow f: A / B. It is possible to have several
arrows with the same source A and the same target B, and even
‘closed’ arrows (the source and target are identical). Let us remark
that the term ‘graph’ is often restricted to the case where there is at
most one arrow from a vertex to another, in which case the graph
can be represented by a binary matrix.

A path of the graph from A to B is a sequence of consecutive
arrows

ðf1; f2;…; fnÞwith f1 : A/A1$ f2 : A1/A2;…; fn : An#1/B:

The paths of G form the graph of paths of G, denoted P(G): it has
the same vertices as G but its arrows from A to B are the paths of G
from A to B. We identify G with a sub-graph of P(G) by identifying
an arrow f to the path (f) with f as its unique arrow.

If G and G0 are two graphs, a homomorphism p from G to G0 as-
sociates to each vertex A of G a vertex p(A) of G0, and to each arrow f
from A to B an arrow p(f) from p(A) to p(B).

Example: The neuronal graph at an instant t: A vertex Nt ¼ (N,
n(t)) models the state at t of a neuron N with its activity n(t) at t
(measured by its instantaneous firing rate). An arrow ft ¼ (f, p(t),
s(t)) from Nt to N0

t models a synapse f from N to N0, labeled by its
propagation delay p(t) around t and by its strength s(t) to transmit an
action potential from N to N0. The strength (negative if the synapse
is inhibitory) varies according to Hebb rule: it increases if the acti-
vations of N and N0 are correlated. The graph of paths of the
neuronal graph will be at the root of our model; the propagation
delay of a path is defined as the sum of those of its factors; and its
strength as the product of their strengths.
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Graphs and their paths are not sufficient to account for the fact
that several paths from N to N0 may play equivalent operational
roles. For instance, different synaptic paths may transmit the same
activation from neuron N to neuron N0. The notion of a category
enriches that of a graph by allowing a comparison of paths to
distinguish ‘operationally equivalent paths’.

2.2. Categories and functors

A category is a graph equipped with an internal composition
associating to a 2-path (f, g) where f: A/ B and g: B/ C the arrow
fg: A / C composite of the arrows f and g. The vertices are also
called objects of the category and the arrows can also be called
morphisms, or more simply links.

The composition satisfies 2 conditions:

(i) it is associative: for a path (f, g, h) we have f(gh) ¼ (fg)h. It
follows that each path, say (f1, f2,…, fn) (whatever its length)
has a unique composite (whatever its 2e2 decomposition)
denoted f1f2…fn.

(ii) for each object A there is an arrow idA from A to A, the
identity of A, whose composite with any arrow of source or
target A is identical to f.

A functor p from a category C to a category C0 is a homomor-
phism of graphs which respects the composition and the identities,
so that

pðfgÞ ¼ pðf ÞpðgÞ and pðidAÞ ¼ idpðAÞ:

2.3. Examples of categories

(i) A monoid is a category with a unique object.
(ii) To a poset (E, <) we associate a category admitting E as the set

of its objects and with a morphism from A to B if and only if
A < B for the order; the categories so associated to posets are
characterized by the fact that there is at most one morphism
between 2 objects.

(iii) A groupoid is a category inwhich eachmorphism f: A/ B has
an inverse f0: B / A such that the composites ff0 are f0f are
identities; in particular a group is a groupoid with a unique
object.

(iv) To each graph G, we associate the category of paths of G: it is
obtained by equipping the graph of paths of G with the
convolution of paths; the identity of an object A is the ‘void’
path from A to A. Each category is a quotient of the category
of paths of its underlying graph by the equivalence relation
on paths: “two paths are equivalent if they have the same
composite”.

(v) Given a graph G and a category C we define the category CG

whose objects are homomorphisms P from G to the under-
lying graph of C, and the morphisms from P to another ho-
momorphism P0 are the natural transformations u: P / P0

where u is a map from the set of objects of G to C such that
P(x)u(j) ¼ u(i)P0(x), for each x: i / j of G..

2.4. Categories of structured sets

Category theory helps giving a precise definition of structure.
For Mac Lane (MacLane, 2010), “a structure is essentially a list of
operations and relations and their required properties, commonly
given as axioms, and often so formulated as to be properties shared
by a number of possibly quite different specific mathematical ob-
jects”. For Landry (Landry, 1999), “category theory, in virtue of its

ability to organize our talk about both structures and the structure
of structures, ought to be taken as a framework for mathematical
structuralism”. Herewe consider how to give a general definition of
structures on sets, by following the ‘categorical’ translation that
Charles Ehresmann (Ehresmann 1957) has given of Bourbaki's
theory of set-structured systems.

We denote by Set the category whose objects are sets (e.g. of a
universe to avoid size problems which we do not raise here), the
morphisms from A to B being the maps from A to B, with their
usual composition. Mathematical structures over sets give rise to
categories with a ‘forgetful’ functor toward Set, for instance: the
category Group whose objects are groups and the morphisms are
homomorphisms between groups, the functor associating to a
group its underlying set (thus ‘forgetting’ the group structure);
the category Top whose objects are topological spaces and the
morphisms are continuous maps between them; the category Cat
whose objects are (small) categories and the morphisms are the
functors between them,… Such categories of structured sets have
been characterized by Ehresmann, under the name homomor-
phism categories as follows:

Definition. A homomorphism category over Set is a category C
equipped with a functor p from C to Set satisfying the 2 conditions:

(i) p is faithful: if c and c0 are morphisms of C from A to B and if
p(c) ¼ p(c0), then c ¼ c0.

(ii) Transport by isomorphism: If A is an object of C and f a
bijection from p(A) to E, there exists an isomorphism c:
A / A0 in C such that p(c) ¼ f; then A0 is called the structure
transported from A by f.

2.5. Universal properties

To say that A has a universal property means that A is a most
efficient (or “universal”) solution to a specific problem. This notion
is made precise in the categorical setting, in relation with the
notion of adjoint functors (Kan, 1958). Universal constructions are
ubiquitous both in Mathematics and in its applications; for
instance, (Phillips and Wilson, 2010) write: “All systematic and
quasi-systematic properties of human cognition are just instances
of universal constructions”.

By Yoneda Lemma, an object A of a category is characterized by
the morphisms to (or out of) A. Thus, a universal property of A will
be recognized through properties of such morphisms, without
necessitating an explicit construction of A, and it will determine A
up to an isomorphism. For instance, the characterization of prod-
ucts is the same in any category, be it the category of sets, of groups,
of modules, of topological spaces, and so on.

The generic example of a universal property for an object of C is
given by an initial object A of C: it is an object with exactly one
morphism from A to any other object of C.

By duality (through reversing the arrows) we obtain a final ob-
ject to which arrives exactly one morphism from any other object.
Each other universal property can be converted into an initial or a
final object of an appropriate category. In the next section, we
explain how it is done in the case of colimits and limits (direct and
inverse limits in the sense of Kan) and this rationale will be
extensively used in the following sections.

3. How to model a multi-scale evolutionary system?

Categorical models of concrete systems generally are concerned
with the invariant structure of the system; an instance is the
Metabolic-Repair (M-R) systems introduced by Rosen (1958). An
M-R system can be thus represented by a simple category.
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Evolutionary multi-scale systems have multiple components of
different complexity levels which, moreover, can vary over time,
with loss, addition, combination or decomposition of components
(the “standard changes” in the terms of Thom, (Thom, 1988)); the
neuro-cognitive-mental system studied later is an example. Such
systems raise 2 problems: defining a hierarchy of components, and
introducing time as an operative tool. The first problem leads to the
introduction of hierarchical categories, and the second to the
notion of an Evolutive System consisting of a family of categories
indexed by time. Both unite into the notion of a Hierarchical
Evolutive System.

3.1. Colimits and limits

A particular kind of universal property leads to the notion of
limits and colimits, which provide general mechanisms for
combining structures and answer the problem: how do simple
objects bind together to form a complex object with emerging
properties (for instance a wall acquires a property of enclosing that
the heap of bricks of which it is formed has not) and how such
complex objects interact? In MENS, colimits will be used to explain
how the dynamics of the neuronal system produces mental
representations.

More abstractly, let C be a category. A pattern in C is a homo-
morphism P from a graph sP into C (if sP is a category, it is called a
diagram in C). A cone with basis P and vertex N is a natural trans-
formation from P to the homomorphism from sP to C constant on N.
These cones are the objects of a full sub-category of CP. A colimit of P
is an initial object of this category of cones.

Let us develop these definitions, using the more concrete ter-
minology of (Ehresmann and Vanbremeersch, 2007).

Definition.

(i) A pattern P in C consists of a family (Pi)i of objects Pi of C and
some distinguished morphisms between them. A cone with
basis P and vertex N, also called a collective link from P to N,
consists of a family (si)i of links si from Pi to N, which satisfies
the following equations:

si ¼ fsj for each distinguished link f from Pi to Pj:

(ii) An object M is a colimit of P if there is a collective link (ci)i
from P to M satisfying the universal property: Any collective
link (si)i from P to N factors through a unique link s fromM to
N such that si ¼ cis for each i. We say that s binds (si).

A pattern P may have no colimit; if it has a colimit it is unique
up to an isomorphism. The fact that P admits M for colimit has for
consequence the systematic association, to each collective link
from P to N, of a morphism from M to N binding it. Thus, the
construction of colimits implicates a systematicity property to be
used later.

An (inverse) limit of P in a category C is defined as a colimit in the
category Cop opposite to C obtained by inversing the direction of the
arrows.

Examples. 1. Let P be a pattern without distinguished links; its
colimit is called the coproduct of the family (Pi)i and its limit the
product of (Pi). In Sets the coproduct is the disjoint union of the Pi's,
and the limit is fðpiÞijpi2Pi for each ig.

2. In the category defining an order, the colimit of a pattern P is
also the coproduct of the family (Pi)i as well as the lower upper
bound of this family; its limit is the greatest lower bound of the
family. For instance, in the category defining the order on the

parts of a set E, the colimit is the union of sets and the limit their
intersection.

3. If P consists of 2 morphisms (f: A/ B, f0: A/%B0) with the same
source A, its colimit is called their pushout; in Sets the pushout is
the quotient of the disjoint union of B and B0 by the equivalence
generated by f(a)%~%f0(a) for each a in A. The limit of 2 mor-
phisms with the same target is called their pullback.

In the sequel, the colimits will make possible to represent the
hierarchy of complexity levels of a multi-scale system.

3.2. The primary role of time: evolutive systems

Generally speaking, when categories are used in relation with
biological systems, the idea is to have a category modeling the
invariant structure of the system (for an in depth study of this idea,
see (Rosen, 1985a)). In MENS the perspective is different for we are
interested in the evolution of the system with its dynamic, studied
in its ‘becoming’ rather than its ‘being’. Importantly, time in-
tervenes under different forms: continuous ‘clock-time’ used to
describe the dynamic of the system and to quantify the propagation
and activation delays; the measure of change (as in Augustine of
Hippo); discrete timescale specific to each co-regulator for delim-
iting its successive steps.

To account for this, the system (be it the neural system or the
neuro-cognitive-mental system) will not be modeled by a unique
category, but by an Evolutive System.

An Evolutive System K consists of:

(i) A family of categories indexed by the timeline Tof the system
(an interval of the positive reals line); each of these ‘config-
uration’ categories Kt represents the state of the system at a
given time t of its existence.

(ii) For each time t0 > t, a functor ktt0 from a subcategory Kt
% of Kt

to Kt0 called transition; Kt
% models the elements ‘still per-

sisting’ at t0, and the functor their change from t to t0. These
transitions satisfy a transitivity condition (cf. Appendix).

We define a component C of the Evolutive SystemK as amaximal
family (Ct)t of objects Ct of the categories Kt related by the transition
functors (cf. Fig. 2); Ct is called the state of the component C at t, and
C is the (dynamic) trajectory of its different states. A link between
components is defined similarly by the successive states of a mor-
phism between successive states of the components.

A configuration gives a snapshot of the system in its simultaneity
at a given date t; the transitions account for the succession of such
snapshots and measure the changes between them (but not how
the change has been produced). On the other hand, components
and links between them keep track of their successive states, thus
giving a ‘transversal’ view allowing for presenting the dynamic.
Components and links defined on an interval J of T form a category

Fig. 1. Collective link and colimit.
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KJ; the categories KJ form a sheaf of categories over T. We often
work in such categories KJ in particular whenwe speak of a pattern
of components of K and its colimit (if it exists).

Example. The neural system will be modeled by an Evolutive
System NEUR, called the Neural Evolutive System and denoted by
NEUR. At each time t of the life of the system, the configuration
category NEURt, called the neuronal category at t. is the category of
paths of the neuronal graph at t (defined in Section 2.1). Its objects
Nt model the neurons N existing at t with their activity n(t), the
morphisms (also called links) the synaptic paths between them,
with their propagation delay and strength at t. This neuronal
category varies over time: the transition from t to a later time t0 is
the functor from a sub-category of NEURt to NEURt0 which associ-
ates to Nt its new state at t0 provided that N still exists at t0, and
similarly for the links. The components of NEUR, called 0-cat-neu-
ronsmodel the neurons N with their activity n during their life, and
the links between them model synaptic paths with the variation of
their propagation delays and strengths. Thus, NEUR gives a faithful
dynamic model of the neural system, reflecting both the ‘birth’ and
‘death’ of neurons or synapses and their dynamic during their life.
But it does not explain how the dynamic is internally generated (for
this cf. Section 5).

The dynamic of an evolutionary system such as the neural sys-
tem results from different ‘physical’ operations (e.g., formation of a
new synapse), which necessitate the activation of some links of the
system and require a specific ‘duration’. To reflect this property of
links in an Evolutive System K we give a functor dt from Kt to Rþ
which associates to amorphism ft of Kt a real number dt(ft) called its
propagation delay at t; moreover the morphisms of Kt are divided
into 2 classes: those which are said to be active at t and those which
are not. In NEUR a link is active at t if it models a synaptic path from
N to N0 transmitting an action potential from N to N0 around t.

3.3. Hierarchical evolutive systems. Complexification process

To account for the different complexity levels of its compo-
nents, an evolutionary multi-scale system, such as the neuro-
cognitive-mental system MENS, will be represented by a Hierar-
chical Evolutive System: that is an Evolutive System in which the
configuration categories are hierarchical, and the transitions
respect the level.

Definition. A category is hierarchical if its objects are partitioned
into a finite number of levels numbered 0, 1,…, m such that each
object C of level n þ 1 is the colimit of at least one pattern (of
interacting objects) contained in the levels 'n. Then C has also a
ramification down to level 0 (cf. Figure 3). The complexity order of C
is the length of the shortest ramification of C; it is thus less or equal
to the level of C. A Hierarchical Evolutive System is an Evolutive
System in which the configuration categories are hierarchical and
the transitions respect the level.

In a Hierarchical Evolutive System, the transitions are com-
posites of elementary transitions for which the change from t to t0

results from operations of the following types: loss or decompo-
sition of some complex objects, binding of some patterns Q
leading to the formation, or preservation if it exists, of a colimit cQ
of Q.

In categorical terms, this operation can be modeled by the
Complexification Process. Given a procedure Pr on the category Kt
the problem of constructing a category inwhich the objectives of Pr
are realized has a universal solution, called the complexification of
Kt with respect to Pr. (For a formal presentation of the complex-
ification process, where a procedure is modelled by a pro-sketch, cf.
Appendix.)

The transition from t to t0 is obtained by complexification if there
is a procedure Pr on the configuration Kt such that the configuration
at t0 be the complexification Kt0 of Kt with respect to Pr. The com-
plexification can be explicitly constructed (Ehresmann and
Vanbremeersch 1987); in particular its objects are the new states
of the components not suppressed by Pr, as well as new compo-
nents cQ which become the colimit of patterns Q specified by Pr (if
2 patterns Q and Q0 have the same operational role, we take
cQ ¼ cQ0). Let us note that, if the HES models a ‘physical’ (or bio-
logical) system, the realization of the ‘physical’ changes induced by
the complexification process requires some duration (from t to t0

above). This point will be conveniently explained, in the case of
MENS, in Section 4.

The complexification procedure may also ask for the formation
of limits of some patterns, then we speak of a mixed complex-
ification. Its construction is more complicated (for more details, see
(Ehresmann and Vanbremeersch 2007)).

3.4. Multiplicity principle MP at the base of non-reductionism and
emergence

MP is a kind of ‘flexible redundancy’ which formalizes the de-
generacy of the neural code (Section 1) and extends it in the frame
of a hierarchical evolutive system.

Definition. In a hierarchical category, an object M of level nþ 1 is
n-multi-faceted if it is the colimit of several non-isomorphic pat-
terns of levels'n such that there is no cluster of links (cf. Appendix)
between them binding into the identity of M. If the category admits
such multi-faceted objects, we say that it satisfies the Multiplicity
Principle.

In a HES, a component M is multi-faceted if it has multi-faceted
states. Then with time M takes its own complex identity (or ‘indi-
viduation’) with possibility of addition or loss of decompositions
(hence also of ramifications) and ‘switches’ between them (cf.

Fig. 2. An Evolutive System K and some of its components.

Fig. 3. A Hierarchical Evolutive System, with a ramification of C. The transition cor-
responds to a complexification which binds Q into cQ.
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Figure 4). This gives flexibility to the system, in particular allowing
for the development of a Memory adapting to changes.

MP is also at the root of emergence properties. Indeed, among
the links from M to M0 there are n-simple links obtained as the
binding of a cluster of links between patterns P and P0 of levels 'n
having M and M0 as their colimits. MP allows for the emergence of
n-complex links obtained as composites of n-simple links binding
non-adjacent clusters (cf. Fig. 5). Such links represent non-local
properties ‘emerging’ at the level n þ 1 from the global structure
of the lower levels. (For more details, cf. Appendix and Section 4.3.)

The existence of complex links is essential in the proof of the
following theorems (Ehresmann and Vanbremeersch, 1996, 2007).

Complexity Theorem. In a HES, MP is necessary for the exis-
tence of components of complexity order >1; without it, all com-
ponents are colimit of a pattern of level 0.

Emergence Theorem. MP is preserved by a complexification
process. It is necessary for the emergence, through iterated com-
plexifications, of components of increasing complexity orders and
of complex links between them.

Iterated Complexification Theorem. With MP, two successive
complexifications may not be reducible to a unique one.

The proof of this last theorem depends on the emergence, in the
first complexification, of complex links which introduce “change in
the conditions of change” (Popper, 1972). As proved in (Ehresmann
and Vanbremeersch, 2007) it has for consequences the mixing of
Aristotelian formal, material and efficient causes which, for Rosen
(1985b), distinguishes organisms from pure mechanisms.

4. Construction of MENS: how the mental emerges from the
brain

The binding process is ubiquitous in evolution and it raises the
following problem: how can simple objects bind together to form
“a whole that is greater than the sum of its parts”? what are the

different patterns of “parts” leading to the same whole, and what
are the simple and complex interactions between such complex
wholes? This problem arises in Neuroscience, where it has been
emphasized by (Malsburg and Bienenstock, 1986), to explain how
mental objects can emerge from exchanges in the brain, and how
they interact. Our aim is to show how the notions of colimits and
complexification help solving it.

4.1. Properties of the neural system

As recalled in the Introduction, a mental object (e.g. the mental
image of a stimulus) activates a synchronous assembly of neurons;
but how do such assemblies interact? The mental object could be
represented by a neuron if there was a neuron N ‘binding’ the
assembly, in the sense that N and the assembly as such have the
same activating role on other neurons. For instance (Hubel and
Wiesel, 1977) have shown the existence of neurons representing
a segment or an angle; and there are also neurons representing
more complex but very familiar objects. In (Gomez and Sanz,
2009, G!omez-Ramirez and Sanz, 2011, 2013, Gomez-Ramirez,
2014) it is shown that hippocampal place cells can be modeled
as the colimit of a pattern of grid cells. It ought to be remarked,
however, that “grandmother neurons” (Barlow, 1972), binding the
neuronal assembly activated by a mental object, cannot be ex-
pected to be found. Moreover, the degeneracy property of the
neural code emphasized by Edelman (Edelman, 1989) means that,
depending on the context, the same mental object can activate
structurally different assemblies.

How to represent the mental object as such and to determine
how it interacts with neurons and other mental objects? To answer
these questions, we model the neuro-cognitive-mental system by
the Memory Evolutive Neural System MENS (Ehresmann and
Vanbremeersch, 2007), whose higher levels emerge as a super-
structure over the 0-level infrastructure NEUR, more precisely,
MENS is a HES generated by the Neural Evolutive System NEUR (cf.
Section 2) through successive complexification processes. Its
components are dynamic objects, called category-neurons (abbre-
viated in cat-neurons) which represent the temporal trajectories of
more and more complex mental objects and processes. The idea is
that a cat-neuron of level 1 ‘binds’, or in MENS nomenclature, be-
comes the colimit of, each pattern of NEURmodeling a synchronous
assembly of neurons activated by the mental object. The con-
struction of the complexification will indicate the ‘good’ (simple
and complex) links between them. Thus, we can speak of patterns
of cat-neurons of level 1 and iterate the construction. Successive
iterations lead to higher level cat-neurons representing more and
more complex mental objects.

4.2. Formation of (multi-faceted) cat-neurons as colimits

An assembly of neurons A is modeled by a pattern P in the
Neural Evolutive System NEUR. The pattern consists of a family of
0-cat-neurons Pi interconnected by some distinguished links f from
Pi to Pj (representing the synapses through which the neurons of A
transmit their activation to each other). If the assembly is syn-
chronously activated at t (meaning the activities of all its neurons
increase), the same is valid for P since the passage to NEUR pre-
serves the activities.

If a stimulus S activates A, this assembly can synchronously
activate a neuron N at a time t if there are links from its different
neurons to N which all transmit the activation of Pi to N at the same
time t, taking account of the interactions of the neurons in A. By
construction of NEUR, this ‘activation’ operation is modeled in
NEUR by the data of a collective link (si)i from the pattern P to N (cf.
Section 3). The set of equations:

Fig. 4. The component M takes its individuation over time.

Fig. 5. Cluster, simple and complex links.
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si ¼ fsj for each distinguished link f from Pi to Pj

imply that the propagation delay of si is the sum of those of f and of
sj,. If there is such a collective link, we say that P acts as a poly-
chromous pattern in the sense of (Izhikevich et al., 2004).

If the stimulus S is repeated or persists, the distinguished links
of A, being simultaneously activated by S, are strengthened via
Hebb rule (Hebb, 1949). Transferred in NEUR it means that P takes
an identity of its own to act as a polychronous pattern. The long-
term memory of S will be recorded in MENS by a cat-neuron M
‘binding’ P, which becomes the colimit of P (cf. Fig. 1). For instance S
could be a rectangle and P the pattern consisting of (the 0-cat-
neurons activated by) its sides and vertices, with distinguished
links from a vertex to the sides containing it.

The degeneracy property of the neural code asserts that the
stimulus S can activate more or less different polychronous as-
semblies of neurons, simultaneously or at different times; though
these assemblies can be structurally different and not even well
connected, they all have the same operational role since they
correspond to the same mental object. In MENS, the cat-neuron M
recording S must represent the invariant common to all these
patterns; hence it must bind each one of them; thus it is multi-
faceted, and MENS satisfies the Multiplicity Principle.

Initially constructed to bind a particular pattern P, the cat-
neuron M later takes its own individuation as a component of
MENS and can even disassociate from P at a later time t0 (cf. Fig. 4). It
is not a rigid memory (as in a computer), but a flexible dynamic
representation which adapts to changing situations, so that S can
later be recognized through the activation of M under different
forms, even new forms not yet met (as long as the change is pro-
gressive enough).

4.3. The hierarchy of cat-neurons and their links

The compositionality of mental representations means that
complex mental objects are constructed by binding together pat-
terns of simpler ones. To ensure it in MENS, we construct a hier-
archy of cat-neurons and links between them, from the level 0 of 0-
cat-neurons (that is, NEUR) up, by successive complexification
processes (Section 3). More explicitly, once constructed the cat-
neurons of level less or equal to n > 0 and their links, the cat-
neurons of level n þ 1 are obtained as colimits of polychronous
patterns of cat-neurons of levels less or equal to n, and there are
two kinds of links between them (cf. Fig. 5):

(i) Simple links. Let M and M0 be 2 cat-neurons of level n þ 1,
binding respectively patterns P and P0 of levels 'n. A (P, P0)-
simple link from M to M0, or n-simple link, is a link binding a
cluster (cf. Appendix) G of links from P to P0. Such a link is
systematically associated to G, using the universal property of
colimits. Being deducible from interactions between com-
ponents of P and P0, it just translates at the level n þ 1 of cat-
neurons the fact that P can coherently activate P0 through G.

(ii) Complex links. A composite of n-simple links binding adjacent
clusters is n-simple. However, because of the existence of
multi-faceted cat-neurons M, there are also n-complex links
which are the composites in MENS of n-simple links binding
non-adjacent clusters separated by a switch, for instance (cf.
Fig. 5) an n-complex link from N to M0 composite of a (Q0, Q)-
simple link with a (P, P0)-simple link, where P and Q are
structurally different non-connected (cf. Appendix) de-
compositions of M. They are not discernible ‘locally’ through
the lower components of N and M0, but emerge at the cat-
neuron level n þ 1 as an outcome of ‘global’ properties of

the lower levels. These complex links reflect global proper-
ties of the lower levels which are not observable locally at
these lower levels. They are at the root of the emergence of
mental representations of increasing complexity.

By construction, the cat-neurons are partitioned into different
levels, so that each cat-neuron M of level n þ 1 binds at least one
pattern P with values in the full sub-category whose objects are of
level'n; and someM aremulti-faceted. Thus, the categoriesMENSt
are hierarchical and satisfy the Multiplicity Principle, and MENS is a
Hierarchical Evolutive System satisfying MP.

Using the universal property of the complexification, it has been
shown (Ehresmann and Vanbremeersch, 2009) that the propaga-
tion delays and strengths of the links in NEUR extend to the links in
MENS, and there is an extended Hebb rule: The strength of a link
fromM toM0 increases if the activities of M andM0 vary in the same
direction.

4.4. Complexity order of a cat-neuron modeling a mental object

Let us emphasize that a cat-neuron M of level n þ 1 is not a
formal symbol but a dynamic adaptive multi-faceted represen-
tation of a mental object or process which, once formed at a time
t, takes its own individuation up to its ‘death’. Indeed, by defi-
nition of the hierarchy, M admits at least one ramification down to
the level 0, obtained by taking a decomposition P into a poly-
chronous pattern of cat-neurons of levels <n þ 1, then a
decomposition of each component Pi of P into a polychronous
pattern of cat-neurons of strictly lower levels and so on, down to
patterns of 0-cat-neurons, which form the base of the ramification.
By construction of NEUR, the patterns in this base model as-
semblies of neurons which formwhat we call the neuronal base of
the ramification.

Because of the multiplicity principle, the cat-neuron M maybe
multifaceted and, over time, acquire or loss some ramifications. The
number of structurally different ramifications of M measures its
entropy or amount of variability. The ramifications of M have not all
the same length. For instance (the cat-neuron representing) a cube
can be directly decomposed into its sides; or first decomposed into
its faces, and then each face decomposed into its sides. The
complexity order of M is the smallest length of a ramification; it is
less or equal to the level of M; and it measures the smallest number
of steps sufficient for a later activation of M.

By activation or recall of (the mental object represented by) M at
a time twemean the unfolding of one of its ramifications R down to
its base B of level 0 and activation of the patterns of 0-cat-neurons
in this base, that corresponds to the physical activation of the
neuronal base of R. At each step of the construction of a ramifica-
tion, there is a choice between various (possibly non-connected)
decompositions, so that the activation of M has several freedom
degrees leading to multiple physical realizabilities (in the sense of
(Kim, 1998) as hyper-assemblies (i.e. assemblies of assemblies of…
assemblies) of neurons. Each operation having some duration
(Section 3), the recall of M requires an activation delay, which in-
creases with the length of R, hence with the complexity order of M.
Activation delays will play a major role in the development of
higher cognitive processes. The successive states of M can be acti-
vated or not and, when activated, realized under anyone of its
ramifications.

Remark. The entropy and the complexity order of a cat-neuron
are two different measures of its intricacy, where both denote in
different ways to its internal richness and flexibility. In particular,
cat-neurons with both a higher complexity order and many rami-
fications will play an important motor role in the formation of
higher cognitive processes.
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Since MENS satisfies MP, the theorems of Section 3 can be
applied, in particular: InMENS, over time there is emergence of cat-
neurons of increasing complexity order, representing more and
more complex mental objects or processes. These cat-neurons
represent mental states which supervene on brain physical states,
with multiple physical realizabilities (as explained above), agreeing
with Kim's mental causation.

5. Local and global dynamics of MENS

5.1. Dynamic of the neural system and its structural core

The neural system has a multi-temporality modular organiza-
tion, withmodules of various typesmodulating its global dynamics.
Successive experiences of any kind, be they sensory, proprioceptive,
motor, affective, cognitive, are memorized to be later recalled in
analog circumstances. They are processed by specific ‘modules’ or
areas of the brain, for example: small specialized “treatment units”
(Crick, 1995) such as the visual centers processing color, to large
areas such as the hippocampus, the nuclei of the emotive brain
(brain stem and limbic system), or Crick's “conscious units” in the
associative cortex.

The dynamic of the neural system depends both on external
stimuli and on its own internal activity. For instance: “cortical ac-
tivity cannot be considered as being driven by the senses, but sen-
sory inputs rather seem to modulate and modify the internal
dynamics of cerebral cortex” (Destexhe, 2011). A main integrating
role is played bywhat (Hagmannet al., 2008) call the Structural Core:

“This complex of densely connected regions in posterior medial
cortex is both spatially and topologically central within the
brain. Its anatomical correspondence with regions of high
metabolic activity and with some elements of the human
default network suggests that the core may be an important
structural basis for shaping large-scale brain dynamics.”

5.2. The self-organized dynamic of MENS

The modular self-organization of the neural system is reflected
to NEUR and extended to MENS. Thus MENS becomes a Memory
Evolutive System in the sense of (Ehresmann and Vanbremeersch,
2007), meaning that it is a HES satisfying MP and equipped with a
sub-HES called itsMemory and a network of functional sub-systems
called co-regulatorswhich operatewith the help of theMemory and
whose possibly conflicting interactions modulate the dynamic.

(i) The Memory is a hierarchical evolutive sub-system MEM of
MENS. A cat-neuron in MEM, called record, models a mental
object associated to an item (external object or signal, past
event, internal state, behavior, sensory-motor or cognitive
process, habit,…). As any cat-neuron, a record is a dynamic
entity which can be ‘recalled’ through the activation of any of
its ramifications. A record takes its own individuation, thus
remaining flexible enough to adapt to changing situations;
thus it acts as a robust, flexible and adaptive dynamic
‘memory’ up to its ‘death’. MEM develops over time, with
emergence of records of increasing complexity (cf. Emer-
gence Theorem) and possible loss of some records. Some
records, called procepts, model procedures of different kinds
(behaviors, automatic processes,…). A procept Pr is associ-
ated to a pattern E modeling the effectors through which Pr
can be realized, and Pr is the (inverse) limit of this pattern E.

(ii) The co-regulators are evolutive subsystems acting as internal
regulatory organs. A co-regulator is based on a specific
module of the brain, meaning that its cat-neurons have

ramifications with their neuronal bases in this module (so
that they model distributed hyper-assemblies of neurons of
the module). It operates stepwise at its own rhythm, with a
specific function (e.g. treating colors) characterized by the
kind of links of MENS it may receive or send; in particular it
has a differential access to MEM to recall its admissible pro-
cepts of which it can directly activate the effectors.

5.3. The local dynamic of the co-regulators and their interplay

Each co-regulator operates stepwise as a “hybrid dynamic sys-
tem”, with 2 temporalities: its own discrete timescale which de-
limits its successive steps (reflecting its ‘internal’ time), and the
shared continuous ‘clock-time’ which allows measuring the
objective length of these steps.

(i) Local dynamic of a co-regulator CR during one step from t to
t0.

The partial information accessible to CR during its step consists
of the links of MENS which activate some components of CR during
the step; they are the components of an Evolutive System L with
timeline the interval J ¼ [t, t0[, called the landscape of CR on J. This
landscape, which acts as a transient working memory for CR during
the step, can be thought as the ‘1st person’ perspective of CR during
its ‘actual present’ J. For instance if CR models a brain module
treating colors and an object S is presented to the system during J,
the landscape will only contain information on the color of S.

Formally, a component b of the landscape L is a link from a cat-
neuron B to a component of CR which remains active during the
step; the links in L from b to another component c of L correspond
to commutative squares (b, c, f, g) with f in CR (cf. Fig. 6).

An admissible procept Pr is selected through a component pr of
L and the effectors of Pr are activated (via the commands e). The
activation of the effectors through one of their neuronal realiz-
abilities (cf. Section 4) during the duration of the step can be
computed by classical models, e.g. using differential equations (in
terms of the activities of the cat-neurons and the strengths of the
links, cf. (Ehresmann and Vanbremeersch, 2009)). The result is
evaluated andmemorized at the beginning of the next step; there is
a fracture for CR if the outcome is not the expected one, modeled by
the fact that the next landscape (beginning at t0) is not the expected
one and/or there is no admissible procept in it.

(ii) The global dynamic

The various co-regulators have different rhythms. At a given
time the commands they sent to activate effectors (via their
neuronal bases) can be conflicting; for instance to seize an object,
the visual and motor commands should fit together. So there is
need for an equilibration process, the interplay among co-regu-
lators, to search for a best compromise between them, possibly
causing fractures to them (e.g. by inhibition of their commands).
An important role is played by evaluating co-regulators, based on
parts of the emotive brain, which model the consequences on the
well-being. Though the one-step local dynamics of the co-
regulators could be computed by usual mathematical models,
the interplay does not seem open to ‘classical’ computations.
Indeed, it has a large number of freedom degrees since each
effector can be activated through anyone of its neuronal realiz-
abilities; moreover it must respect the structural temporal con-
straints of each co-regulator CRi expressed by inequalities of the
form pi ' di ' si which relate the length di of its step at t to the
largest propagation delay pi of the components of its landscape
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and to their minimal stability-span si (Ehresmann and
Vanbremeersch, 2007).

6. The Archetypal Core at the basis of phenomenological
processes

The Structural Core of the human cortex (Section 5.1) plays a
central integrative role in the dynamic of NEUR. The Archetypal Core
(Ehresmann and Vanbremeersch, 2007) plays a similar role in
MENS.

6.1. The Archetypal Core

Higher mental processes heavily depend on the formation of a
repertory of memories of notable events and major recurrent ex-
periences which integrate multiple modalities (sensorial, proprio-
ceptive, motor,…) with their emotional overtones, their welfare
values and the main procedures associated to them. Thanks to their
frequent recall, they become connected by fast and strong links
maintaining their activation for some time…With these links they
form a particular sub-system of the memory which has been called
the Archetypal Core (Ehresmann and Vanbremeersch, 2001, 2007);
by associating sensory-motor and perceptual categories with value
states, it represents a personal internal model of the body, its ex-
periences and its acquired knowledge. The archetypal core is
related to what Edelman calls the value-dominated memory: “a
conceptually based special memory system for value matched to
past categories” (Edelman, 1989, pp. 99e100).

In MENS, the Archetypal Core is modeled by a higher order
integrative evolutive sub-system AC of the memory MEM with its
neuronal base in the Structural Core (cf. 5.1). The records in AC bind
patterns of records of different modalities, so that they are records
of higher complexity order, with a number of ramifications with
their base in SC, that is to say, a model in NEUR of the Structural
Core. Its development over time depends on the emergence of re-
cords of increasing complexity order through iterated complex-
ifications (made possible by the Emergence Theorem).

Due to the strongly connected structure of the SC, these
‘archetypal records’ are connected by multiple complex links. As
they are often activated, with time these links become stronger and
faster (generalized Hebb rule), and they form archetypal loops
which propagate very quickly the activation of an archetypal record
back to itself, thus self-maintaining it. Thanks to these loops, AC
self-maintains its activity for some time.

An archetypal record A displays two interacting modes of tem-
poral presence, conferring it a “duration” (“dur!ee vraie” in the sense
of Bergson, 1888). On the one hand, due to the long activation delay

of a cat-neuron of higher order (cf. Section 4), its activation at the
instant t implies that A has a ramification R whose neuronal base
has been activated before t, thus A collects information coming
from the just-passed through the unfolding of R. On the other hand,
the activation of A can be temporally self-maintained through
archetypal loops, so that A will remain activated later (because of
the propagation delays of archetypal links), thus it also offers an
opening to the next future. This situation compares to (and allows
for) the retention and protention processes described by Husserl
(1904): “At eachmoment, there is simultaneously in consciousness,
the actual presence of phenomena already passed together with
the anticipation or projection of the future”.

6.2. The intentional network and its macro-landscape ML

AC is directly linked to some co-regulators CRi of higher orders,
based onwhat Crick (1995) calls conscious units (in associative brain
areas). These co-regulators with the links connecting their com-
ponents in MENS form an evolutive sub-system of MENS which we
call the intentional network IN (to suggest its phenomenological
analog). By acting as a macro-co-regulator, IN plays a main role for
developing higher order processes in MENS, with AC acting as a
conductor and a driving force.

A non-expected or arousing situation leads to a surge of atten-
tion correlated with the activation of part of the structural core. In
MENS, archetypal records A,A0 which have a ramification R with its
neuronal base in this part, are activated; their activation diffuses
into AC via archetypal loops, then resonates to lower level cat-
neurons via the unfolding of other ramifications of A and
switches between them. It follows that a large domain of MENS is
activated, and this activation at various levels persists for some
time, thanks to the activation-maintaining role of AC (due to the
archetypal loops). In particular this surging activity may cause a
fracture to IN at t.

To counteract the fracture, IN acts as a macro-co-regulator to
form a macro-landscape ML. It is an evolutive system on a longer
timeline J than the timelines Ji of the landscapes Li of the co-
regulators CRi; it has for components all the links activating IN
during J, so that it unites and extends the Li's both in ‘depth’ and in
duration. Its development over time relies on the following
processes:

(i) Sharing of information by the CRi's: If b activates the
component O of CRi and f is an active link from O to an O0 in
another CRj then the composite fb is also a component of ML.

(ii) Access to past lower levels: If O is activated at t via a link a
from an archetypal record A to O, it means Awas activated at
t-da (where da is the propagation delay of a). Due to the
activation delay of a higher order cat-neuron, it means that
the neuronal base of a ramification R of A has been activated
still earlier, say at tdad0a. Moreover we have components of
ML (such as c ¼ ua and b ¼ vua on Fig. 7) coming from
different levels of R, which have been activated at past times;
these components (which did not figure in earlier landscapes
of the CRi) may model ‘non-conscious’ information. Thus ML
conjugates a descent in the “depth of time” (in the sense of
Vrobel, 2015) with a descent into lower levels (Fig. 8).

(iii) Propagation of the activation: The activation spreads via
loops in AC to other archetypal records such as A0 and to
their decompositions, leading to new components of ML
such as a00 (cf. Fig. 7). Switches between decompositions of
activated archetypal records also lead to new components
(such as c0).

ML has a longer timeline than the Li's because its activation is

Fig. 6. The landscape of CR has for components the active (curved) links b, c, c0 , pr. The
links between them are commutative squares (with vertical composition).
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mediated by the activation of archetypal records and we know that
AC is able to self-maintain its activity for some time. Thus, ML de-
velops with time by iteration of the 3 preceding processes, its
components coming from a range of levels and being activated at
different times. (ML could be compared to the “theatre” of Baars,
1997.)

6.3. Higher cognitive processes

Successive temporally overlapping macro-landscapes give a
frame for the development of higher cognitive and mental pro-
cesses, such as conscious processes, embodied intelligence, crea-
tivity or anticipation (Ehresmann, 2012). It is done through
iteration of the following intertwining processes.

(i) Retrospection (toward the past): Such a process starts by a
non-expected or arousing situation (‘phenomenon’) which
causes a fracture to the intentional network IN. As explained
above, this leads to the formation of a macro-landscape ML
which represents a dynamic model, for IN, of the system, its
near past and its present becoming (‘1st person’ perspective
of IN). Indeed, as we have seen, a ‘temporal and depth
descent’, through unfolding ramifications, allows ML to
retrieve past lower level events (for instance modeling
instinctive motor or perceptive behaviors, emotions and af-
fects, reflexes, …) thus accounting for embodiment and
emotions. ML also contains higher levels information, and its
various components can be shared between the ‘conscious’
CRi, giving a comprehensive analysis of the situation.

(ii) Prospection (toward the future). It consists in the search for
procedures onML and their evaluation by construction of the
corresponding complexification of ML; the long persistence
of ML allows for realizing these operations; finally one is
selected. Different methods are possible to construct such
procedures. In particular, ML, among its components, con-
tains components issued from activated archetypal procepts
(say, a0 in Fig. 7), for instance from admissible procepts of the
CRi's. A procedure on ML can consist in binding patterns of
such ML-components. The activation of the procepts is
transmitted to their effectors, which may or not be seen in
ML. In the first case, the corresponding complexification can
be ‘virtually’ constructed in ML. Otherwise the complex-
ification is constructed in MENS, and evaluated only through
the changes caused toML. These changes (e.g. the emergence
of a complex link) may cause a fracture to ML, leading to the
formation of a new macro-landscape and iteration of the
retrospection and prospection processes in it.

The development of a higher cognitive process, say a creative or
anticipative process, may require such a sequence of retrospection-
prospection-complexification, with, at each step, selection of a
procedure Prk on a macro-landscape MLk and realization of the
corresponding complexification; the sequence (Prk) of procedures
is called a “scenario”. The Iterated Complexification Theorem
(Section 3) implies that, if complex links emerge in the interme-
diate complexifications, then the final result was not initially pre-
dictable (i.e. it cannot be obtained by a unique complexification of
the first ML0). It is the case with really creative scenarios, tran-
scending the current situation with unpredictable results; exam-
ples are given by the “transformational creativity” of Boden (2004)
or the “really new futures” of R. Miller (2007).

MENS has been constructed as a dynamic model of the neuro-
cognitive mental system. Now we are going back to this system
by trying to ‘metaphorically’ translate the model in terms of mental
objects/processes/states, and their phenomenological meaning. IN
becomes the conscious Self, ML its 1st person perspective, partially
accessible to language.

The timeline of ML reflects the time of the “conscious acts
themselves” (second level of temporality for Varela, 1999); it ex-
tends the physical time imposed by propagation and activation
delays (his first level); while the overlapping of the timelines of
successive macro-landscapes gives rise to the “flow of time related
to personal identity” (his third level).

Simeonov (2015) writes: “… first is the question of how expe-
riences at large could already be latent in time experiences of the
individual. Once this has been clarified, the next step should be to
identify the nature of an agency for the succeeding abstraction
along Mach's line. Maybe the notion of delays could bridge these
two projections.” His suggestion is somewhat justified by the
specific role played by the propagation delays and activation delays
in the AC and ML operations (as explained in 6.2 and 6.3).

The retrospection process consists in the formation and analysis
of ML for ‘making sense’ of the present situation. Prospection is an
intentional process to select and evaluate long-term scenarios for
the future (while protention just indicates an opening toward the
future, a “disposition for action” (Varela, 1999)). The construction of
scenarios can be compared to the construction of narratives in
(Goranson and Devlin, 2015).

7. Discussion and conclusion: MENS vs. classicism,
connexionism and neuro-phenomenology

MENS gives a dynamic mathematical methodology for
studying the neuro-cognitive-mental system as a whole. Using

Fig. 7. AC, IN and formation of the macro-landscape ML. Its components are red.

Fig. 8. Temporal origin of the components (in red) of ML in relation with their ‘depth’.
The large arrow indicates that the timeline of ML extends up to t0 .

A.C. Ehresmann, J. Gomez-Ramirez / Progress in Biophysics and Molecular Biology xxx (2015) 1e1310

Please cite this article in press as: Ehresmann, A.C., Gomez-Ramirez, J., Conciliating neuroscience and phenomenology via category theory,
Progress in Biophysics and Molecular Biology (2015), http://dx.doi.org/10.1016/j.pbiomolbio.2015.07.004



categorical constructions (colimits, HES, complexification pro-
cess), it explains how a hierarchy of mental objects emerges from
brain activity, a mental object having a dynamic multi-faceted
representation, under the form of a category-neuron which
takes its own individuation over time. A key factor for their
emergence and multiplicity is the degeneracy property of the
neural code (formalized by the Multiplicity Principle). By combi-
nation of such cat-neurons depending on certain rules (repre-
sented by the links of the patterns that they bind), mental
representations (objects and processes) and mental states of
increasing complexity can emerge and allow developing a flex-
ible memory, with a central part, the Archetypal Core AC which
acts as a conductor for the formation of macro-landscapes in
which higher order cognitive and mental processes can be
developed.

Thus, MENS seems to set the basis for a truly multidisciplinary
approach to higher order brain function and mental processes, and
to the mindebrain interaction problem.

To conclude we address the 2 following questions:

(i) To what kind of ‘Theory of Mind’ does MENS lead? in
particular, how is it situated in relation to classicism and
connectionism?

(ii) Is MENS entitled to be called a ‘Naturalized
Phenomenology’?

7.1. MENS as a theory of mind between classicism and
connectionism

The Stanford Encyclopedia of philosophy defines a “Repre-
sentational Theory of Mind” as “any theory that postulates the
existence of semantically evaluable mental objects, <…> as well
as the various sorts of “subpersonal” representations postulated
by cognitive science “. In particular a Theory of Mind should
satisfy two main properties, namely compositionality and
productivity.

These properties are satisfied in MENS: cat-neurons are ob-
tained by ‘composition’ (binding) of (hyper-)assemblies of neurons;
but they themselves can be combined to ‘produce’ new cat-neurons
which, thanks toMP, can representmore andmore complexmental
states, whence the compositionality and productivity of mental
processes represented by cat-neurons.

These two properties are also satisfied in classicism, but in it, at
the difference of MENS, the representations are symbolic and based
on ‘atoms’, while cat-neurons are multi-faceted dynamic repre-
sentations, taking their own individuation over time, and with an
internal structure with multiple neuronal realizabilities. In con-
nectionism, representations may have a neural basis as for us, but
Fodor and Pylyshyn (Fodor and Pylyshyn, 1988) have shown that
connectionist models cannot handle compositional semantics. In
MENS it becomes possible because we introduce the ‘binding’
operation, leading to a kind of hierarchy of connectionist systems,
each one having for units at its base the cat-neurons of strictly
lower levels.

Thus, MENS seems intermediate between classicism and con-
nectionism, and somewhat closer to some neo-connectionism
models such as morphodynamism in which

“ the conceptual contents of mental states and their semantic
correlates are no longer identified with labels for symbolic
ordering. Their meaning is embodied in the cognitive processing
itself, identified with the topology of complex attractors of the
underlying neural dynamics, and the mental events are identi-
fied with sequences of bifurcations of such attractors”
(Barandiaran, 2011).

Indeed, it can be proved (Ehresmann and Vanbremeersch, 2009)
that locally a cat-neuron plays the role of an attractor of the neural
dynamics; and a cat-neuron, being multi-faceted, keeps its indi-
viduation over time by addition or suppression of some ramifica-
tions (acting as bifurcations of its trajectory).

7.2. Systematicity in MENS

Another property generally required for a theory of mind is
systematicity. To analyze if it is satisfied in MENS, we first need to
say what it means. The problem is that there is currently no
encompassing definition which everyone agrees upon.

In the Dictionary of Philosophy of Mind, systematicity is defined
as a number of putative psychological properties or regularities.
Fodor and Pylyshyn define systematicity of mental representation
as “the fact that cognitive capacities always exhibit certain sym-
metries, so that the ability to entertain a given thought implies the
ability to entertain thoughts with semantically related contents. “
More explicitly, for (Hadley, 1997):

“ A cognitive agent, C, exhibits systematicity just in case its
cognitive architecture causally ensures that C has the capacity to
be in a propositional attitude (A) towards proposition aRb if and
only if C has the capacity to be in attitude (A) towards propo-
sition bRa.

Similar ideas have been elaborated upon at length elsewhere, in
particular in Kenneth Aizawa's book (Aizawa, 2003).

These definitions essentially concern context-independent ca-
pabilities, but even in the case of language there are exceptions, for
instance x є {x} does not allow {x} є x in the usual language of set
theory including the foundation axiom. This has led some authors,
e.g. Johnson (Johnson, 2004), to refute any kind of systematicity. A
more formal approach using category theory has been developed
by Phillips and Wilson (Phillips and Wilson, 2010), (Phillips and
Wilson, 2011); for them systematic (and quasi-systematic) prop-
erties are instances of universal constructions, and may, in partic-
ular, involve the capacity to compute coproducts.

In MENS, we propose 2 kinds of systematicity:

(i) Bottom-up systematicity: As indicated in Sections 3 and 4, cat-
neurons (constructed as colimits) and simple links depend
on systematic constructions based on universal properties;
and complex links can be interpreted as kinds of new sys-
tematic rules imposed by the categorical composition.

(ii) Top-down systematicity: We have seen (Section 4.4) that a
cat-neuron has multiple neuronal realizabilities through the
activation of its different ramifications. It follows that the
capacity of activating one of these ramifications systemati-
cally implies the capacity of activating the others.

7.3. MENS provides a naturalized phenomenology

As a consequence of the MP, a mental object, represented by a
multi-faceted cat-neuron, has multiple physical realizations into
hyper-assemblies of neurons (through its different ramifications),
thus allowing for flexibility and ‘multiple’ mental causation. This
multiplicity shows that Varela's Hypothesis 1:

“For every cognitive act, there is a singular, specific cell assembly
that underlies its emergence and operation” (Varela, 1999)

is only valid for tokens, not for types, and it explains how MENS
avoids the “isomorphism between neural and mental” at the basis
of many criticisms of neuro-phenomenology.
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To summarize, MENS proposes a categorical “bridging strat-
egy” (Bayne, 2004) for closing the gap between neural and
phenomenal data by also accounting for intentionality and con-
sciousness, Bergsonian duration, Husserl's retention and pro-
tention, embodied cognition, higher order cognitive and mental
processes up to creativity and anticipation. It is done via the long
term macro-landscapes ML, which model the “1st person”
perspective; their construction and duration depend on the
Archetypal Core (the mental analog of the Structural Core of the
brain) which acts as a driving motor by self-maintaining its acti-
vation for some time through its archetypal loops and trans-
mitting it to ML (Fig. 9).

Appendix. Mathematical definitions

1 An Evolutive System K consists of:
(i) The timeline Tof the system and, for each t of T, a category Kt

called configuration of the system at t.
(ii) For each time t0 > t, a functor kt;t0 transition from t to t0 from a

subcategory of Kt to Kt0 . These functors satisfy the transi-
tivity condition:

(TC) If an object At has new configuration At0 ¼ ktt0 ðAtÞ at t0, then
At0 has a new configuration At00 ¼ ktt00 ðAtÞ at t00 if, and only if, At0 has
a configuration at t00, and then At00 ¼ kt0t00 ðAt0 Þ. Similarly for the links.

2. If P and P0 are two patterns in a category C, a cluster from P to P0 is
a maximal set G of links between their components satisfying
the following conditions:
(i) Each Pi has at least one link to a component of P0; and if there

are several such links, they are correlated by a zigzag of
distinguished links of P0.

(ii) The composite of a link in Gwith a distinguished link of P0, or
of a distinguished link of P with a link in G also belongs to G.

If P and P0 have colimits M and M0 respectively, it follows from
the universal property of a colimit that the cluster G ‘binds’ into a
unique link cG from M to M0, called a (P, P0)-simple link.

Two patterns Q and P are non-connected if they have the same
colimit M though there is no cluster between them binding into the
identity of M. Then M is said to be multi-faceted, and the passage
from Q to P a switch between decompositions of M.

3. Complexification: A pro-sketch Pr on a category K consists (at
least) of the following data: a set S of objects of K and a set P of

patterns in K. The complexification K0 or K with respect to Pr is
the ‘universal solution’ of the problem of constructing a category
K0, called the complexification of K for Pr, and a functor F from a
sub-category K% of K to K0 verifying the conditions:
(i) K% does not contain the elements of S;
(ii) for each P in P the pattern FP image of P by F admits a

colimit cP in K0; if P has a colimit in K, cP is the image of this
colimit by F; otherwise cP ‘emerges’ in K0 to become the
colimit of P. The morphisms of K0 are both simple links and
complex links.

For the explicit construction of the complexification, cf. EV
(1987, 2007).
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