
Chapter 13
Hippocampal Categories: A Mathematical Foundation
for Navigation and Memory

Jaime Gómez-Ramirez and Ricardo Sanz

Abstract It goes without saying that in science, experiments are essential; hypothesis need to be
contrasted against empirical results in order to build scientific theories. In a system of overwhelming
complexity like the brain, it is very likely that hidden variables, unknown by the experimentalist, are
interacting with those few elements of which the values are expected and can be validated or rejected
in the laboratory. Thus, at the end of the day, the experimentalist is refuting or validating tentative
models that are somehow prisoners of the lack of knowledge about the structure of the system. The
global picture being missing, a key is to look for the fundamental structure which must be found not
in the objects, but in the relationships between the objects—their morphisms. How components at the
same level interact (the objects here being neurons) and how superior levels constrain those levels
below and emerge from those above is tackled here with a mathematical tooling. The mathematical
theory of categories is proposed as a valid foundational framework for theoretical modeling in brain
sciences.

13.1 The Hippocampus as a Representational Device

How does the mind represent physical space? This is a question that has kept philosophers busy for
centuries. In 1975, the philosophical discussions about space representation acquired a extremely
powerful and fresh insight when O’Keefe and Nadel, discovered the place cells in the hippocampus
of the rat [13].

The experimental study of spatial representation in the brain has since then exploded. The 70’s was
the decade of the place cells, neurons that discharge when the rat is in a particular position. In the 80’s
head direction cells, neurons that discharge significantly whenever the rat’s head changes direction,
acquired the attention of scholars. Since 2005 we have been in the era of the grid cells.

These discoveries are of major importance in different research fields. Indeed the theory of the
cognitive map [13] is rooted in the discovery of place cells in the hippocampus. One derivative of this
theory is the map-based navigation capability, that some animals have, and that engineers have been
able to replicate in robots [10].

The debate about whether the brain generates a map-like structure or not, seems to have shifted in
favour of those who back the cognitive map theory. Indeed the discovery of place cells, head cells and
grid cells suggest so.

Yet the underlying nature of the cognitive map remains elusive. Is the representation purely metrical
or is topological? Are the maps constructed in the hippocampus built without paying attention to the
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features of the environment—i.e. metrical maps—or do they reflect the relationships between the
environmental features—i.e. topological maps?

In a sense, the role of the hippocampus is to associate internal and external coordinate systems and
to accommodate cue conflict situations (reinstantiate the context when there is a mismatch between
internal and external relationships). Rather than debating whether the hippocampus is the depositary
of the declarative memory or the index access of a collection of maps, it may be more productive to ask
just what is the role of hippocampus in navigation and memory. With this mind, in The hippocampal
debate: Are we asking the right questions? [16], Redish suggests that there are multiple memory
systems in the brain and multiple navigation systems.

13.1.1 Place Cells

Place cells are neurons located in the hippocampus that fire in complex bursts whenever an animal,
for example a rat, moves through a specific location in an environment.

The striking thing about place cells is that they code the spatial position of the animal, irrespective
of either the direction from which the position is reached or the behavior of the rat at any precise
instant. Thus, there is a direct link between the neural activity of a single cell to a Cartesian position
of the rat.

How does the animal know that it is in a particular position? Apparently this could be done by
computing the allocentric space, landmark or visual cues. The most important property of these place
cells is their omnidirectionality property, that can be observed in the conical shape of their activation
landscapes (the firing rate increases when the rat approaches the location, independently of the direc-
tion is heading when it does it). Thus the immediate conclusion is that place cells are coding explicit
(no contextual) locations in the environment and not particular sensorial cues.

The region in which a place cell fires the most is called its place field. Thus, there is a corre-
spondence place field/place cell. What defines a place field is that the firing rate within the field is
much higher than outside—e.g.: from 20 Hz to 0.1 Hz. For a given environment, we can determine a
collection of place cells whose associated place fields cover the whole environment.

Nobody denies that under certain circumstances, the hippocampal pyramidal cells show location-
associated firing. However, it is less clear what they really represent; there are those who argue that
place cells can be an epiphenomenon, produced by the spatial nature of the experiments where these
cells are discovered. Granted that place cells are correlated to space, the question that arises is: Are the
place cells the only neurons correlated to space? The possible representational content of these cells
and of the assemblies they constitute, can serve to further question how the hippocampus contributes
to spatial representation, navigation and episodic memory.

13.1.1.1 Place Cells as Representational Entities

The interest in these cells is rooted in the fact that they are good candidates to be the direct represen-
tation of the external space—i.e. a neural correlate of spatial perception. A place cell, fires maximally
when the animal is in a specific position or place field, so the firing rate of a cell can be used to decode
the position of the animal within the environment with striking accuracy.

The existence of place cells was not accepted until Muller [12] came out with a numerical method
that allows to quantify the place fields.

In this context, we can attempt to formally define the term “place field”. A place field F , for a place
cell, is an open ball of radius r and center x in a normed vector space V —the spatial environment—
such that f r(F ) > k, where k is a constant that represents a threshold for firing rate, and f r a function
that returns the minimum firing rate for all the pixels (vectors) that fall into the ball F (Fig. 13.1).
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Fig. 13.1 The picture shows the place fields corresponding to seven hippocampal CA1 place cells of a rat (CA1 is a
region of the hippocampus. See Fig. 13.3). Thus, as it is obvious from the figure, the position of the rat is encoded in the
firing of these cells. The place fields have conical shapes, this meaning that the neuron firing rates increase irrespective
of the direction from which the rat arrives to the place

Fig. 13.2 Grid maps have been obtained from rat neurons [7]. The typical experiment uses an electrode to record the
activity of an individual neuron in the dorsomedial entorhinal cortex. Spike recordings are made as the rat moves around
freely in an open area. The image shows an spatial autocorrelogram of the neuronal activity of the grid cell. Image by
Torkel Hafting

13.1.2 Grid Cells

Grid cells, like place cells, are place-modulated neurons; however the firing location of a grid cell is
multiple, contrary to the place cells which are mono field. The multiple firing location of a grid cell is
indeed a grid with a most striking property, it is an array of equilateral triangles [7] (see Fig. 13.2).

It might be noted that grid cells were discovered while researchers investigated whether place cells
activity was endogenous to the hippocampus.

The hypothesis was that CA3 and DG are the intra-hippocampal inputs to CA1 (see Fig. 13.3),
which is the area in the hippocampus where one can find most of the place cells. This idea was proven
wrong, after removing CA3 and DG, the CA1 inputs, the spatial firing in CA1 persisted. So place
signals did not exclusively arise within the hippocampus. The signal bearing spatial information was
brought to the CA1 from outside the hippocampus.

In 2004 Fyhn et al. [6] discovered a group of neurons in the medial entorhinal cortex (mEC) that
show space-related firing. These mEC cells have sharply tuned spatial firing, much like the hippocam-
pal place cells do, but with one difference: each of the mEC cells, has multiple firing fields rather
than one as is the case in the place cells. One year later, Hafting et al. [7] discovered that the many
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Fig. 13.3 Basic circuit of
the hippocampus, as drawn
by Ramón y Cajal [15]

firing fields of each neuron, organise into a grid. Thus as the animal moves, the grid cells tile the
environment with periodic triangles that reflect the changing position.

As was said before, the grid cells have been found in the mEC. From the six layers of this cortical
structure, it is in layer II where we can find the highest density of this kind of cells. The neurons in the
layer II of the medial entorhinal cortex (mEC-II) are the main input of the place cells, but in contrast
the entorhinal cells are activated throughout the environmental terrain, whenever the animal is at the
vertex of some equilateral triangle, forming a tessellation or grid.

In short, both place cells and grid cells are neurons with spatially located firing; in other words,
they have spatial representational power, allowing the animal to know its position and to navigate in
an environment, for example to find the way back home after eating. The difference, apart from the
fact that place cells are hippocampal neurons and grid cells are in the mEC, is that whereas a place cell
has a single firing location, a grid cell has multiple firing fields with a striking geometric regularity;
the firing fields form periodic triangular arrays, tiling the entire environment available to the animal.

13.1.2.1 Grid Field

Three parameters are necessary to fully describe the grid associated to a grid cell: spacing is the
distance between contiguous fields, orientation is the rotation angle of the grid referred to a reference
axis, and spatial phase is how much the grid is translated relative to a reference point.

A grid field for a grid cell is a set of open balls Gi : 1..n, where for every ball Gi , f r(Gi) > k, i.e.
the grid cell has a significative firing rate. Thus, so far, the definition of Gi is similar to place field
seen in Sect. 13.1.1.1.

Additionally, every ball Gj of a grid field, form equilateral triangles with its closest balls. The
grid field G is identified by the three parameters, spacing, orientation and phase that can be trivially
obtained from the metric of the space defined above.

The processing of the place signal is therefore not an exclusive privilege of the hippocampus, with
the mEC playing a major role in the spatial representation.

The majority of cells in mEC-II and mEC-III have grid properties, and this means that most of
the cortical input to the hippocampal place cells that have to do with spatial representation, comes
from grid cells in the mEC. Grid cells can be found just one synapse upstream of the place cells [7].
Therefore, acknowledging that grid cells and place cells are intrinsically connected, the claim that
place fields may be extracted from grid fields [11] deserves to be appropriately explored (Table 13.1).

Mathematically, using Fourier’s analysis, several grid fields with different spacing can combine
linearly to yield a place field. Solstad [17] proposes a computational model showing that place field
can arise by the sum of 10–50 grid cells. When the spatial phase variation in the grid-cell input was
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Table 13.1 Place cells and Grid cells, similarities and differences

Brain area Type of map Activation

Place cells Hippocampus Static Need input from mEC

Grid cells mEC Dynamic Active instantaneously in any novel environment

higher, multiple, and irregularly spaced firing fields were formed. This idea has been very appealing in
the hippocampus community, and it has helped to produce a large number of models with a common
tenet: place cells in the hippocampus compete to receive the summed firing pattern activity of the
cortical grid cells.

The problem with these kind of models that transform grid patterns into place pattern is that they
do not tell us that much about the mechanisms that underlie the spatial firing pattern of grid cells
and place cells. Besides, it is debatable that a linear sum of grid cell pattern which has a metric is
the correct way to model a place cell pattern which represents topologically the environment without
metrical relations.

It might be remarked here that the models of grid field formation, deal with timing rather than with
structure or connectivity, and this is because they assume that the structure is already known. In these
models the structure is a single cell whose firing activity needs to be understood.

There is a number of computational models that aim to simulate a grid field, however they do not
tell us much about the causes that originates that phenomenon, let alone a mechanistic explanation
that unveils the real causes of the emergence of place cells in the hippocampus.

As Zilli points out [20], we must be prudent (“the study of grid cells is still in its infancy”). The
mechanisms that underlie the spatial firing pattern are still waiting to be discovered.

13.2 A Theory of Brain’s Spatial Representation Based on Category Theory

The huge amount of information on brain structure and operation that is being produced—e.g. by
fMRI techniques—must be analysed from a theoretical background to have lasting impact in brain
theory. Otherwise the global picture of brain operation is going to be missed. It is necessary to look
for the fundamental structures which must be found not just in the objects—the neurons—but also in
the relationships between the objects and the emerging organisations.

How components at the same level interact (the objects here being neurons) and how superior levels
constrain those levels below and emerge from those above is tackled here with a mathematical tooling.
The mathematical theory of categories is proposed as a valid foundational framework for theoretical
modeling in brain sciences [2].

One of the highlights of this work is that it exemplifies the theory of categories in strong non-
algebraic categories. Indeed, the crucial aspect and novelty in this work needs to be met in the cate-
gorical construction of biological (non algebraic) categories.

13.2.1 The Category of Neurons

For this purpose we must find a definition for a neural abstract category CAT-Neur as a category
whose objects are either neurons or sets of neurons. CAT-Neur as any other category, consists of
three things, i. a set of objects O , ii. a set of morphisms Mor(A,B) for any two objects A, B of O ,
and iii. a rule of composition that fulfills the properties of associativity and identity.
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Fig. 13.4 (X,d) is a metric space where X is the set of place cells in the hippocampus and d the Euclidean metric
distance, (Y, e) is a metric space in the bidimensional plane with identical distance e = d . The mapping between the
metric spaces f : X → Y preserves the distances if e(f (x1), f (x2)) = d(x1, x2). f is said to be an isometry and is
immediately a monomorphism (Demo: x1 "= x2, e(f (x1), f (x2)) = d(x1, x2) "= 0 ⇒ f (x1) "= f (x2)). An isometry that
is an epimorphism is an isomorphism

We identify three possible definitions for the category CAT-Neur that may be useful for the devel-
opment of the theory introduced in this paper: Neur, Neur+ and Neur*.

The category Neur, whose objects are neurons and the morphisms are the synaptic paths between
them, with the convolution of paths as composition.

The category Neur* which is the category of neurons where the objects are topological spaces of
neurons (N, θ) and the morphisms are continuous maps.

A function from two topological spaces f : (N, θ) → (M,υ) is continuous if f −1(B) ∈ θ when-
ever B ∈ υ .

The category Neur+, which has as objects, metric spaces, and as morphisms, Lipschitz maps for
λ = 1 that preserve distances.

Note that a Lipschitz map is always continuous but the contrary is not true. The morphisms in
Neur+ preserve distances between metric spaces which will exemplify neural assemblies.

13.2.2 The Category of Places

Now we will define a category for modeling place fields, that is the physical locations that produce
the spike firing in the grid cells and place cells.

Following the previous definition for Neur, the category Field+ has as objects metric spaces (in-
cluding hexagonal grids) and as morphisms contractions (a specific class of functions between metric
spaces). And the category Field* is composed of topological spaces as objects and continuous func-
tions as morphisms.

The category of metric spaces is of course defined by objects and morphisms. The objects are
metric spaces (X,d) and the morphisms are mappings between metric spaces (X,d) → (X′, d ′)
(Fig. 13.4). As in any other category, the composition of morphisms must satisfy associativity and
identity. A metric space is a structure (X,d) with X being a set and the function d : X × X → R+

satisfiying:

1. d(x, y) = 0 when x = y
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2. d(x, y) = d(y, x) and
3. d(x, z) ≤ d(x, y) + d(y, z)

Typically the function d is assumed to be the Euclidean distance. The Euclidean distance is a map
d : Rn × Rn → R+. For n = 2 the distance is d((x1, y1), (x2, y2)) =

√
((x1 − x2)2 + (y1 − y2)2). Of

course, other distances are possible. One example of a metric that satisfies the three axions above is the
“Manhattan distance” or d : Rn ×Rn → R+, where for a two dimension space, d((x1, y1), (x2, y2)) =
|x1 − x2| + |y1 − y2|.

Definition 13.1 A mapping f : (X,d) → (X′, d ′) preserves distances if for all pair of points, x1, x2 ∈
X, it holds d(x1, x2) = e(f (x1)f (x2)).

Definition 13.2 A function f : (X,d) → (Y, e) between two metric spaces is continuous at x0 ∈ X if
for all ε > 0 there exists δ > 0 such that if d(x, x0) < δ then e(f (x0), f (x)) < ε

Definition 13.3 A contraction is a Lipschitz map with λ < 1, while a map between two metric spaces
f : (X,d) → (X′, e), is such that d(x1, x2) = e(f (x1)f (x2)), is a distance preserving map. Note that
every Lipschitz map is continuous and as contractions are Lipschitz maps with λ < 1, contractions are
continuous [2].

Now we are able to define the category Met of metric spaces and Lipschitz maps that are structure
preserving maps. The composition of Lipschitz maps, g ◦ f , is a Lipschitz map and the properties
associativity of composition and identity idx : (X,d) → (X,d), are trivially demonstrated.

The topological spaces are useful when we are interested in closeness and continuity rather than
in distance as it is the case in metric spaces. The category of topological spaces Top is one that has
topological spaces as objects and continuous maps as morphisms.

13.2.3 Functor Between Neur and Field

At this point we wish to define the relation between the Neur and Field categories that have been
defined using the concept of functor.

Let us consider that Neur+ is a category whose objects are sets of neurons and the arrows all the
functions between them. In the case of considering only one place cell, the category Neur+ is a set of a
single element or singleton. For an object of a given category C, there is an unique functor F : C → 1.
Thus, there is an unique functor from the category of metric spaces and Lipschitz-distance perserving
maps, Field+, and the category of one single place cell 1.

Functors preserve isomorphisms, so given the functor F : C → D, the isomorphisms in category
C are preserved in category D.

An interesting feature of functors is that they may preserve properties. For example, since functors
preserve composition of morphisms ◦, and identities, id , they preserve every property that can be
positively expressed in the language of ◦ and id . In particular they preserve commutativity of diagrams
[1]. So given a functor F : C → D, for certain objects, arrows or composition of arrows in category
C, that have the property p, the functor F brings such property to the F -image.

Definition 13.4 Let C and C′ two categories, a covariant functor F from C to C′ is defined as i. a
rule which associates for every object A in C an object F(A) in the category C′ and ii. a rule that
associates for every morphism α : A → B in C a morphism F(α) : F(A) → F(B) in the category C′.
Then F must satisfy the following two conditions:
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ii.a The composition is preserved: for the diagram (diagram is formally defined in Sect. 13.3.1) A
α−→

B
β−→ C in C, F(α ◦ β) = F(α) ◦ F(β)

ii.b Identities are preserved: for any object A in the category C, F(idA) = id(FA)

Now, the functor (more precisely a covariant functor) from a category of neurons CAT-Neur to the
category Met of metric spaces, F : CAT-Neur → Met is such that:

i Every object N in the category of neurons CAT-Neur is mapped onto an object F(N) in the cate-
gory Met.

ii Every morphism α : N → N ′ in CAT − Neur is mapped onto a morphism F(α) : F(N) → F(N ′)
in the category Met. F preserves composition and identity.

ii.a The composition is preserved, so A
α−→ B

β−→ C in CAT-Neur, F(α ◦N β) = F(α) ◦M F(β)

(both sides of the equation are morphisms in Met).
ii.b Identities are preserved, so for any object A in the category CAT-Neur, F(idA) = id(Fa) (both

sides of the equation are morphisms in Met).

The physiological interpretation of the functor is as follows. i means that it is possible for any
object N in the category of neurons CAT-Neur to have associated a metric space (X,d). As it was
stated in Sect. 13.2.1, the objects in the sets of category CAT-Neur are sets of neurons.

Note that this is different to assign a location to a set of neurons, rather we are associating a set of
neurons with a metric space N → (X,d), where d : X × X → R+.

For example, let Met1 be the category of metric planar space of diameter 1, (M,υ), that is,
d(m,m′) ≤ 1 for all m,m′ ∈ M, M being an open ball. Then F(N), F : N → (M,υ), represents
that the object N , a set of neurons, falls into a circumference of diameter 1 in the two-dimensional
space M .

On the other hand, if we take for the category CAT-Neur the category Neur, then condition ii can
be interpreted as follows, whenever there is a synapse between two neurons n,n′, α : n → n′, there is
a relationship between the metric spaces associated to each of the synaptic neurons, F(α) : F(N) →
F(N ′), such that F is a map that preserves composition and identity.

Condition ii.a, if A
α−→ B

β−→ C, then F(α ◦ β) = F(α) ◦ F(β) simply means that the map asso-
ciated to a synaptic path is equivalent to the map associated to the synapses.

The last requirement, identity is preserved, can be interpreted as there is always a metric space for
any neuron.

It might be remarked that the functor F defined here, does not preserve the metric space defined in
the category Met. This is in accordance with the empirical fact that the brain has no metric or at least
not a Euclidean-like metric based on the concept of distance.

Indeed, what F does is to bring the structure of the category of neurons over to the category of
metric spaces Met. The very different nature of the two categories that are being mapped by F , makes
difficult to see how F works.

With an example we will try to make this point more clear. Let the objects of Neur be place cells,
that is, neurons that fire when the brain occupies a position in a plane surface like for example a maze
or a box. The metric space for the environment is given by the category Met. For every synapse α

coupling two place cells, N and N ′ in Neur. F(N) and F(N ′) are called the place fields of N and N ′

respectively in the category Met.
Thus, the mapping F , in order to be a functor needs to be a structure preserving map between Neur

and Met, the two categories being mapped by F . In the case that CAT-Neur is Neur whose objects
are neurons, the relationship between the place field of the postsynaptic cell F(N ′) and the place field
of the presynaptic cell F(N) may be exemplified by d(F (Ni),F (Nj )) ≤ d(N ′

i ,N
′
j ), where Ni,Nj

are in category Neur, and N ′
i ,N

′
j in category Met.
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13.3 A New Framework for Place and Grid Cells

Here we propose a radically new theoretical framework for the formation of place cells from grid
cells. The computational models of the hippocampus [3, 4, 18] state that the sum of a set of elements,
grid cells, directly produce another element, a place cell. In doing so, these models take for granted
that the properties of the sum are directly reducible to those of its components. This strict form of
reductionism is at odds with the nature of complex systems. It is necessary to tackle the system as
a whole, and bring to light the way in which the components interact, producing higher levels of
functionality emerging from complexity, exemplified in new systemic properties that are not present
in the single components.

It might be remarked here, that this is not a criticism of the reductionist approach. Indeed the
reductionist analysis is arguably the best plan of action that one may follow in order to understand
how a system works. But this is just the half of the work, the synthetic endeavor must follow after the
analysis.

In what follows, we describe the effect in injecting the concepts of co-product and colimit from
category theory into the problem of place cell formation in the hippocampus.

The classical reductionism credo states that the whole is no more than the sum of its parts. There-
fore the properties of the sum are reduced to those of its components, without introducing new prop-
erties. This is what the categorical concept coproduct exemplifies: for a given category, all one needs
to know is about the components Ai to build the coproduct

∐
i Ai , this is possible because all the

components play a symmetrical role in the construction.

Definition 13.5 A coproduct of two objects A and B is a an object A + B together with the arrows

A
ι1−→ A+B and B

ι2−→ A+B , such that for any object C and the pair of arrows A
α−→ C, B

β−→ C,
there exists an unique morphism π that makes the following diagram commute:

A

α

ι1

B

β

ι2
A + B

π

C

The coproduct generalizes to the direct sum as shown in the next diagram [14]:

C

∐
i Ai

(h)

Ai

αi

πi

On the other hand, the more general concept of colimit embodies the collective operations made by
the family of components Ai which are made possible because the components cooperate by means
of the links that connect them [5]. The coproduct defined before is actually a special case of a colimit.
The colimit in a category of a family of components Ai without any arrow between them is identical
to the coproduct. A precise definition of colimit will be introduced later.
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Fig. 13.5 The family of
objects A1, A2, A3, A4 has
both a colimit cP and a
coproduct

∐
i Ai . The

coproduct is linked by s to
the colimit. The link s
express the transit from the
coproduct to the colimit
and embodies the
symmetry breaking in the
relationship between the
family of objects Ai and
the colimit

Fig. 13.6 A colimit K for
the base diagram D. For
the sake of clarity in the
figure the diagram D has
three objects Ai , i = 1,2,3

The colimit, contrary to the coproduct, entails a non symmetric relationship with its components.
As the Fig. 13.5 depicts, the coproduct can be compared to the colimit cP . This symmetry breaking
process may be somehow quantified by the arrow s.

13.3.1 Place Field as Colimit of Grid Fields

The hypothesis prosed here is that the cooperation of the grid fields gives rise to the colimit which is
a place field. Thus the colimit of the metric system depicted in Fig. 13.6 can be seen as an integrator
of the information contained in the metric system components.

It might be remarked that the colimit is an object of the category Field, a sort of complex object
that actualizes the internal organisation of the objects that it is binding. Colimits and limits do not
exist for all diagrams in all categories, but if they exist, they are unique up to isomorphism.

The mathematical definition of colimit needs a prior definition, that of diagram, that is a precise
concept in category theory.

Definition 13.6 A diagram D in a category C is a collection of vertices and directed edges consis-
tently labeled with objects and arrows of the category C. Thus, if an edge in the diagram D is labeled
with an arrow f such that f : A → B in C, then the vertices this edge in the diagram D, must be
labeled A and B [14].

Definition 13.7 Let D be a diagram in a category C with objects labeled Di and morphisms labeled
fk : Di → Dj . We call cocone K for diagram D to the apical object B , together with the set of
morphisms gi : Di → B forming a commutative diagram, that is, gj ◦ fk = gi .
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Fig. 13.7 A colimit K for
a diagram is a cocone
defined in terms of the
existence of morphisms
from other cocones K ′

Fig. 13.8 The figure
depicts a colimit where (4)
acts as the place field of a
place cell (6) in the
hippocampus. The colimit
is produced by several grid
fields (one grid field (1) is
produced by one grid cell
(5))

Given the cocones K ′ and K ′′ for D, a cocone morphism h : B ′ → B ′′ is a morphism in C such that
g′′

i = h◦g′
i . To simplify the notation we denote the cocone morphism determined by h as h : K → K ′.

Directly, the cocones form a category, the category of cocones cocD.

Definition 13.8 A colimit for the diagram D is an initial object K in the category cocD, that is, for
any other cocone K ′ for diagram D, there exists a unique cocone morphism h : K → K ′.

It follows from the definition that all colimits are isomorphic because all initial objects are isomor-
phic.

Figure 13.8 shows that grid fields and grid cells in the medial entorhinal cortex (mEC), are linked
by a map, as there is a map between place cells and place fields. Therefore for each grid cell, there
is grid field, which is a metric space, where arrangement generates regular hexagons. For each place
cell there is one place field which is also an object of the category of metric spaces, Field, but in this
case, its geometry is a simple point rather than a hexagon.
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We can assume that the neurons—place cells and grid cells—depicted in the bottom of the figure,
are in the category Neur having as objects neurons and as morphisms synaptic connections.

However, this is not always the case. For example, a neural category whose objects contain several
neurons connected between them forming populations of neurons, has neuronal assemblies as objects
rather than single neurons.

In this line, it is particularly valuable to shed light on how populations of grid cells contribute to
the formation of one place cell. The colimit is the mathematical structure that allow us to encode the
emergence of place field and the relationship between grid fields.

Now let us focus on the grid fields depicted as hexagons in Fig. 13.8 and their morphisms. It has
been said above that regular hexagons are objects in the category Field, now we need to investigate
the morphisms between the grid-field object in this category.

A contraction between two grid-field objects (G1, d, o,ψ), (G2, d, o,ψ) is a continuous function
f : (G1, d, o,ψ) → (G2, d, o,ψ), satisfying d(f (x, y)) ≤ d(x, y) and o(f (x, y)) ≤ o(x, y).

This restriction is in accordance with the experimental finding that shows that spacing in grid fields,
increases along the dorsoventral axis in the medial entorhinal cortex (mEC). This fact appears to be
correlated with the increase in size of place fields along the dorsoventral axis of the hippocampus
[8, 9].

Neighbor cells in the mEC have similar spacing and orientation. However, there is no evidence that
anatomical cell clusters, correspond to functionally segregated grid maps with their own spacing and
orientation [11].

On the other hand, the phase of the grid does not follow the restriction of continuity that spacing
and orientation have. Indeed, firing vertices of colocalized grid cells are shifted randomly, that is to
say, the mapping between vertices in the grid field and the external reference grid is not continuous.
This is in fact how fields of neighboring hippocampal place cells behave.

The colimit is a universal property; it is a remarkable fact that deserves to be explained. When a
mathematical construction, in our case a colimit, satisfies an universal property, one can forget the
details of the structure and focus on the universal property because all that has to be known about the
colimit, is exemplified in the universal property.

One important point that needs emphasis is that the existence of a colimit imposes constraints, not
only on the diagram of grid cells that determine the colimit, but also on all the objects of the category.
Besides, the colimit, if it exists, is uniquely determined (up to isomorphism) but the reverse is not
true, one colimit can have several decompositions. Put it in the context of Fig. 13.8, this means that
when the coordinated activity of a group of grid cells produce a place cell, this is a colimit and it is
unique. But given a place cell, its place field cannot be uniquely determined by a group of grid cells,
as a matter of fact, several grid fields are possible for that place field.

13.4 A Theory of Declarative Memory (Episodic and Semantic) Based
on Category Theory

The dual role of the hippocampus in formation and retrieval of concepts is not surprising, especially
considering that the formation of new memory (knowledge) requires the retrieval of the old one.
Thus, memory is knowledge, and perception is a condition of possibility of memory and therefore of
knowledge.

Just as any other higher cognitive function, to try to give a definition of memory seems hopeless.
The definition in the MIT encyclopedia of cognitive sciences [19] is open enough to satisfy everyone:
“the term memory implies the capacity to encode, store, and retrieve information”. However, it is also
too unrestricted to provide a clear idea about what memory is and how it works.
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Certainly, memory is not an univocal term, it has several forms that depend on different brain mech-
anisms. So a well-founded strategy to get an understanding of how memory works is to investigate
how such cognitive process is implemented in the brain.

The idea behind this is that the layman’s view of memory, which is still commonly used, which will
become irrelevant once the biological mechanisms of memory have been uncovered and, if possible,
described in mathematical terms.

The main point that is being explored in this heading is that despite the diverse nature of episodic
and semantic memory, it is possible to connect them via categorical objects like product, pullback or
colimit.

Let us begin by the introduction of the categorical product and its application in a navigational task
in one dimension, after which the results will be expanded to navigation in a two-dimensional arena
and the use of the categorical concept of pullback.

13.4.1 Categorical Product in Acquisition of Middle Point Concept in 1D
Navigation

Suppose a rat is placed in a track (one dimensional environment), the animal immediately starts mov-
ing back and forth in order to get and idea of the dimensions of the environment. As the rat moves
from one point to the other, episodic memories are created. Thus the animal is able to make the associ-
ation of self-centered information with the temporal order in which the different positions are reached.
Episodic memories are not explicit. Explicit ones may be retrievable independent of the internal state
of the rat.

Suppose there is no particular visual or smell stimulus that can make the rat remember any partic-
ular position. One may think that after a while, the rat will acquire an explicit memory, for example
the concept of middle point which exemplifies the position in the track, from where it needs the same
amount of time to get any of the extremes.

A cognitive behavior involves integration of information. The categorical concept of product is a
formalisation of integration. Moreover, as it will be shown later, a product in a category that admits a
final object, is an instance of a more general categorical form, pullback.

Definition 13.9 In a given category C, a product of two objects A and B , is another object P equipped

with two morphisms, P
p1−→ A and P

q1−→ B , such that for any pair of morphisms, X
f−→ A and

X
g−→ B there is an unique morphism h making the following diagram commute:

X
x1

h

x2

A P
p1 p2

B

Note that the broken arrow h means that it is unique. The morphisms p1, p2 are usually called
projection morphisms. The main characteristic of a product is that the constituents are retrievable via
the projection morphism.
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Fig. 13.9 WA and WB are
the two walls that the rat
will meet when moving in
a single track maze. After
reaching both walls, the
animal would develop the
concept of middle point P

The following diagram shows the use of the categorical product for the modeling of the process of
acquisition of place memories of the middle point between two walls WA and WB .

X
x1

h

x2

WA P
p1 p2

WB

For our purpose, the categorical product given by the object P and the morphisms p1,p2 is a state-
ment about a cognitive behavior of the rat, whereas X and x1, x2 is a constraint on what constitutes a
valid product, rather than a specific claim about cognition. Note that there is not any particular com-
mitment in the morphisms p1,p2. In fact, p1 can mean the travel time to reach the wall A, WA, but
also the number of steps needed.

Figure 13.9 represents a possible experimental setting that could be use to explore the biological
plausibility of our theory in the acquisition of the middle point concept in a rat moving in a single
track maze. P , WA and WB being objects in the category C of memories or mental objects that will
be described with more detail in future works.

13.4.2 Categorical Pullback in Acquisition of Middle Point Concept in 2D
Navigation

Now suppose the rat is removed from the one dimensional track depicted in Fig. 13.9 and put upon a
plane. The rat’s capacity to build the explicit memory for the middle point of the arena can be seen as
analogous to the generalised product—i.e.: a pullback.

Definition 13.10 In a category C, a pullback of two morphisms with common codomain A →f

C ←g B is an object P together with a pair of morphisms P
p1−→ A and P

p2−→ B that form a
commutative diagram f ◦ p1 = g ◦ p2.

P
p2

p1

B

g

A
f

C

Moreover, the morphisms are universal among such squares because for any pair of morphisms
Z

z1−→ A and Z
z2−→ B such that f ◦z1 = g ◦z2, there is an unique morphism h such that the following
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diagram commutes:

Z

z1

z2

h

P

p1

p2
B

g

A
f

C

A pullback may be seen as a constrained product, being the constrain given by f and g, f ◦ p1 =
g ◦ p2.

P
p2

p1

WB

g

WA
f

WC

13.4.3 Pullback and Grid Cell Formation

The concept of pullback may be useful in dealing with grid cells. The way in which grid cells are
calculated in literature is tricky. One of the three parameters refers to how accurate the representation
outside the cell is. In doing so you are putting the outcome of the system in the input.

In the following diagram, P can be seen as a grid cell where the projection morphisms p1 and
p2 refer to the orienting and the spacing respectively. The morphisms f and g impose additional
restrictions in the grid cell, like for example the constant value of those parameters all over the arena.

P
p2

p1

B

g

A
f

C

13.5 Discussion

A theory that fully explains and predicts the highly complex cognitive abilities like perception, mem-
ory or learning has not been produced yet. Our society needs to deal with problems like for example
Alzheimer’s disease that is ravaging a big sector of the population. It goes without saying that to shed
light on the role played by the hippocampal system in cognitive functions like memory and learning
can be of extraordinary value for the future of our own species.

We must exploit the important fact that from the point of view of neurobiological knowledge,
memory and perception share the same neural substrate.

The time is ripe for a mature and rigorous approach to brain structure and function that sets the
basis for a shareable scientific framework, able to carry out knowledge, commonly understandable
among the different actors in the brain sciences.
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